Discrete Mathematics \& Mathematical Reasoning Arithmetic Modulo m, Primes

Colin Stirling

Informatics

Division

Definition

If a and b are integers with $a \neq 0$, then a divides b, written $a \mid b$, if there exists an integer c such that $b=a c$.
b is a multiple of a and a is a factor of b

Division

Definition

If a and b are integers with $a \neq 0$, then a divides b, written $a \mid b$, if there exists an integer c such that $b=a c$.
b is a multiple of a and a is a factor of b
$3|(-12) \quad 3| 0 \quad 3 \times 7$ (where X"not divides")

Division

Definition

If a and b are integers with $a \neq 0$, then a divides b, written $a \mid b$, if there exists an integer c such that $b=a c$.
b is a multiple of a and a is a factor of b
$3|(-12) 3| 0 \quad 3 \times 7$ (where X"not divides")
Theorem
(1) If $a \mid b$ and $a \mid c$, then $a \mid(b+c)$
(2) If $a \mid b$, then $a \mid b c$
(3) If $a \mid b$ and $b \mid c$, then $a \mid c$

Division

Definition

If a and b are integers with $a \neq 0$, then a divides b, written $a \mid b$, if there exists an integer c such that $b=a c$.
b is a multiple of a and a is a factor of b
$3|(-12) \quad 3| 0 \quad 3 \times 7$ (where X"not divides")

Theorem

(1) If $a \mid b$ and $a \mid c$, then $a \mid(b+c)$
(2) If $a \mid b$, then $a \mid b c$
(3) If $a \mid b$ and $b \mid c$, then $a \mid c$

Proof.

We just prove the first; the others are similar. Assume $a \mid b$ and $a \mid c$. So, there exists integers d, e such that $b=d a$ and $c=e a$. So $b+c=d a+e a=(d+e) a$ and, therefore, $a \mid(b+c)$.

Division algorithm (not really an algorithm!)

Theorem

If a is an integer and d a positive integer, then there are unique integers q and r, with $0 \leq r<d$, such that $a=d q+r$

Division algorithm (not really an algorithm!)

Theorem

If a is an integer and d a positive integer, then there are unique integers q and r, with $0 \leq r<d$, such that $a=d q+r$
q is quotient and r the remainder; $q=a \operatorname{div} d$ and $r=a \bmod d$

Division algorithm (not really an algorithm!)

Theorem

If a is an integer and d a positive integer, then there are unique integers q and r, with $0 \leq r<d$, such that $a=d q+r$
q is quotient and r the remainder; $q=a \operatorname{div} d$ and $r=a \bmod d$ $a=102$ and $d=12 \quad q=8$ and $r=6 \quad 102=12 \cdot 8+6$

Division algorithm (not really an algorithm!)

Theorem

If a is an integer and d a positive integer, then there are unique integers q and r, with $0 \leq r<d$, such that $a=d q+r$
q is quotient and r the remainder; $q=a \operatorname{div} d$ and $r=a \bmod d$

$$
\begin{array}{lll}
a=102 \text { and } d=12 & q=8 \text { and } r=6 & 102=12 \cdot 8+6 \\
a=-14 \text { and } d=6 & q=-3 \text { and } r=4 & -14=6 \cdot(-3)+4
\end{array}
$$

Division algorithm (not really an algorithm!)

Theorem

If a is an integer and d a positive integer, then there are unique integers q and r, with $0 \leq r<d$, such that $a=d q+r$
q is quotient and r the remainder; $q=a \operatorname{div} d$ and $r=a \bmod d$
$a=102$ and $d=12 \quad q=8$ and $r=6 \quad 102=12 \cdot 8+6$
$a=-14$ and $d=6 \quad q=-3$ and $r=4 \quad-14=6 \cdot(-3)+4$

Proof.

Let q be the largest integer such that $d q \leq a$; then $r=a-d q$ and so, $a=d q+r$ for $0 \leq r<d$: if $r \geq d$ then $d(q+1) \leq a$ which contradicts that q is largest. So, there is at least one such q and r. Assume that there is more than one: $a=d q_{1}+r_{1}, a=d q_{2}+r_{2}$, and $\left(q_{1}, r_{1}\right) \neq\left(q_{2}, r_{2}\right)$. If $q_{1}=q_{2}$ then $r_{1}=a-d q_{1}=a-d q_{2}=r_{2}$. Assume $q_{1} \neq q_{2}$; now we obtain a contradiction; as $d q_{1}+r_{1}=d q_{2}+r_{2}$, $d=\left(r_{1}-r_{2}\right) /\left(q_{2}-q_{1}\right)$ which is impossible because $r_{1}-r_{2}<d$.

Congruent modulo m relation

Definition

If a and b are integers and m is a positive integer, then a is congruent to b modulo m, written $a \equiv b(\bmod m)$, iff $m \mid(a-b)$

- $17 \equiv 5(\bmod 6)$ because 6 divides $17-5=12$

Congruent modulo m relation

Definition

If a and b are integers and m is a positive integer, then a is congruent to b modulo m, written $a \equiv b(\bmod m)$, iff $m \mid(a-b)$

- $17 \equiv 5(\bmod 6)$ because 6 divides $17-5=12$
- $-17 \not \equiv 5(\bmod 6)$ because $6 \nmid(-22)$

Congruent modulo m relation

Definition

If a and b are integers and m is a positive integer, then a is congruent to b modulo m, written $a \equiv b(\bmod m)$, iff $m \mid(a-b)$

- $17 \equiv 5(\bmod 6)$ because 6 divides $17-5=12$
- $-17 \not \equiv 5(\bmod 6)$ because $6 \nmid(-22)$
- $-17 \equiv 1(\bmod 6)$

Congruent modulo m relation

Definition

If a and b are integers and m is a positive integer, then a is congruent to b modulo m, written $a \equiv b(\bmod m)$, iff $m \mid(a-b)$

- $17 \equiv 5(\bmod 6)$ because 6 divides $17-5=12$
- $-17 \not \equiv 5(\bmod 6)$ because $6 \nmid(-22)$
- $-17 \equiv 1(\bmod 6)$
- $24 \not \equiv 14(\bmod 6)$ because 6×10

Congruence is an equivalence relation

Theorem
 $a \equiv b(\bmod m) i f f a \bmod m=b \bmod m$

Congruence is an equivalence relation

Theorem
 $a \equiv b(\bmod m) i f f a \bmod m=b \bmod m$

Proof.

Assume $a \equiv b(\bmod m)$; so $m \mid(a-b)$. If $a=q_{1} m+r_{1}$ and $b=q_{2} m+r_{2}$ where $0 \leq r_{1}<m$ and $0 \leq r_{2}<m$ it follows that $r_{1}=r_{2}$ and so $a \bmod m=b \bmod m$. If $a \bmod m=b \bmod m$ then a and b have the same remainder so $a=q_{1} m+r$ and $b=q_{2} m+r$; therefore $a-b=\left(q_{1}-q_{2}\right) m$, and so $m \mid(a-b)$.

Congruence is an equivalence relation

Theorem
 $a \equiv b(\bmod m)$ iff $a \bmod m=b \bmod m$

Proof.

Assume $a \equiv b(\bmod m)$; so $m \mid(a-b)$. If $a=q_{1} m+r_{1}$ and $b=q_{2} m+r_{2}$ where $0 \leq r_{1}<m$ and $0 \leq r_{2}<m$ it follows that $r_{1}=r_{2}$ and so $a \bmod m=b \bmod m$. If $a \bmod m=b \bmod m$ then a and b have the same remainder so $a=q_{1} m+r$ and $b=q_{2} m+r$; therefore $a-b=\left(q_{1}-q_{2}\right) m$, and so $m \mid(a-b)$.

- $\equiv(\bmod m)$ is an equivalence relation on integers

A simple theorem of congruence

Theorem

$a \equiv b(\bmod m)$ iff there is an integer k such that $a=b+k m$

A simple theorem of congruence

```
Theorem
\(a \equiv b(\bmod m)\) iff there is an integer \(k\) such that \(a=b+k m\)
```


Proof.

If $a \equiv b(\bmod m)$, then by the definition of congruence $m \mid(a-b)$. Hence, there is an integer k such that $a-b=k m$ and equivalently $a=b+k m$. If there is an integer k such that $a=b+k m$, then $k m=a-b$. Hence, $m \mid(a-b)$ and $a \equiv b(\bmod m)$.

Congruences of sums, differences, and products

Theorem
If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then $a+c \equiv b+d(\bmod m)$ and $a c \equiv b d(\bmod m)$

Congruences of sums, differences, and products

Theorem

If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then $a+c \equiv b+d(\bmod m)$ and $a c \equiv b d(\bmod m)$

Proof.

Since $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, by the previous theorem, there are integers s and t with $b=a+s m$ and $d=c+t m$. Therefore, $b+d=(a+s m)+(c+t m)=(a+c)+m(s+t)$, and $b d=(a+s m)(c+t m)=a c+m(a t+c s+s t m)$. Hence, $a+c \equiv b+d(\bmod m)$ and $a c \equiv b d(\bmod m)$

Congruences of sums, differences, and products

Theorem

If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then $a+c \equiv b+d(\bmod m)$ and $a c \equiv b d(\bmod m)$

Proof.

Since $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, by the previous theorem, there are integers s and t with $b=a+s m$ and $d=c+t m$. Therefore, $b+d=(a+s m)+(c+t m)=(a+c)+m(s+t)$, and $b d=(a+s m)(c+t m)=a c+m(a t+c s+s t m)$. Hence, $a+c \equiv b+d(\bmod m)$ and $a c \equiv b d(\bmod m)$

Corollary

- $(a+b) \bmod m=((a \bmod m)+(b \bmod m)) \bmod m$
- ab mod $m=((a \bmod m)(b \bmod m)) \bmod m$

Arithmetic modulo m

- $\mathbb{Z}_{m}=\{0,1, \ldots, m-1\}$

Arithmetic modulo m

- $\mathbb{Z}_{m}=\{0,1, \ldots, m-1\}$
- $+_{m}$ on \mathbb{Z}_{m} is $a+_{m} b=(a+b) \bmod m$

Arithmetic modulo m

- $\mathbb{Z}_{m}=\{0,1, \ldots, m-1\}$
- $+_{m}$ on \mathbb{Z}_{m} is $a+_{m} b=(a+b) \bmod m$
- $\cdot m$ on \mathbb{Z}_{m} is define $a \cdot m b=(a \cdot b) \bmod m$

Arithmetic modulo m

- $\mathbb{Z}_{m}=\{0,1, \ldots, m-1\}$
- $+_{m}$ on \mathbb{Z}_{m} is $a+_{m} b=(a+b) \bmod m$
- $\cdot m$ on \mathbb{Z}_{m} is define $a \cdot m b=(a \cdot b) \bmod m$
- Find $7{ }_{11} 9$ and $-7 \cdot{ }_{11} 9$

Arithmetic modulo m

- $\mathbb{Z}_{m}=\{0,1, \ldots, m-1\}$
- $+_{m}$ on \mathbb{Z}_{m} is $a+_{m} b=(a+b) \bmod m$
- $\cdot m$ on \mathbb{Z}_{m} is define $a \cdot m b=(a \cdot b) \bmod m$
- Find $7{ }_{11} 9$ and $-7 \cdot{ }_{11} 9$
- $7{ }_{11} 9=(7+9) \bmod 11=16 \bmod 11=5$

Arithmetic modulo m

- $\mathbb{Z}_{m}=\{0,1, \ldots, m-1\}$
- $+_{m}$ on \mathbb{Z}_{m} is $a+_{m} b=(a+b) \bmod m$
- $\cdot m$ on \mathbb{Z}_{m} is define $a \cdot m b=(a \cdot b) \bmod m$
- Find $7{ }_{11} 9$ and $-7 \cdot{ }_{11} 9$
- $7{ }_{11} 9=(7+9) \bmod 11=16 \bmod 11=5$
- $-7 \cdot{ }_{11} 9=(-7 \cdot 9) \bmod 11=-63 \bmod 11=3$

Primes

Definition

A positive integer $p>1$ is called prime iff the only positive factors of p are 1 and p. Otherwise it is called composite

Primes

Definition
 A positive integer $p>1$ is called prime iff the only positive factors of p are 1 and p. Otherwise it is called composite

Theorem (Fundamental Theorem of Arithmetic)

Every positive integer greater than 1 can be written uniquely as a prime or as the product of its prime factors, written in order of nondecreasing size

Primes

Definition

A positive integer $p>1$ is called prime iff the only positive factors of p are 1 and p. Otherwise it is called composite

Theorem (Fundamental Theorem of Arithmetic)

Every positive integer greater than 1 can be written uniquely as a prime or as the product of its prime factors, written in order of nondecreasing size

$$
765=3 \cdot 3 \cdot 5 \cdot 17=3^{2} \cdot 5 \cdot 17
$$

Proof of fundamental theorem

Theorem (Fundamental Theorem of Arithmetic)

Every positive integer greater than 1 can be written uniquely as a prime or as the product of its prime factors, written in order of nondecreasing size

Proof of fundamental theorem

Theorem (Fundamental Theorem of Arithmetic)
Every positive integer greater than 1 can be written uniquely as a prime or as the product of its prime factors, written in order of nondecreasing size

Showed by induction if $n>1$ is an integer then n can be written as a product of primes

Proof of fundamental theorem

Theorem (Fundamental Theorem of Arithmetic)
Every positive integer greater than 1 can be written uniquely as a prime or as the product of its prime factors, written in order of nondecreasing size

Showed by induction if $n>1$ is an integer then n can be written as a product of primes

Missing is uniqueness

Proof of fundamental theorem

Theorem (Fundamental Theorem of Arithmetic)
Every positive integer greater than 1 can be written uniquely as a prime or as the product of its prime factors, written in order of nondecreasing size

Showed by induction if $n>1$ is an integer then n can be written as a product of primes
Missing is uniqueness
Lemma if p is prime and $p \mid a_{1} a_{2} \ldots a_{n}$ where each a_{i} is an integer, then $p \mid a_{j}$ for some $1 \leq j \leq n$

Proof of fundamental theorem

Theorem (Fundamental Theorem of Arithmetic)
Every positive integer greater than 1 can be written uniquely as a prime or as the product of its prime factors, written in order of nondecreasing size

Showed by induction if $n>1$ is an integer then n can be written as a product of primes

Missing is uniqueness
Lemma if p is prime and $p \mid a_{1} a_{2} \ldots a_{n}$ where each a_{i} is an integer, then $p \mid a_{j}$ for some $1 \leq j \leq n$
By induction too

Proof of fundamental theorem

Theorem (Fundamental Theorem of Arithmetic)
Every positive integer greater than 1 can be written uniquely as a prime or as the product of its prime factors, written in order of nondecreasing size

Showed by induction if $n>1$ is an integer then n can be written as a product of primes

Missing is uniqueness
Lemma if p is prime and $p \mid a_{1} a_{2} \ldots a_{n}$ where each a_{i} is an integer, then $p \mid a_{j}$ for some $1 \leq j \leq n$
By induction too
Now result follows

There are infinitely many primes

There are infinitely many primes

Lemma Every natural number greater than one is either prime or it has a prime divisor

There are infinitely many primes

Lemma Every natural number greater than one is either prime or it has a prime divisor

Follows from fundamental theorem

There are infinitely many primes

Lemma Every natural number greater than one is either prime or it has a prime divisor

Follows from fundamental theorem

Proof Suppose towards a contradiction that there are only finitely many primes $p_{1}, p_{2}, p_{3}, \ldots, p_{k}$. Consider the number $q=p_{1} p_{2} p_{3} \ldots p_{k}+1$, the product of all the primes plus one. By hypothesis q cannot be prime because it is strictly larger than all the primes. Thus, by the lemma, it has a prime divisor, p. Because $p_{1}, p_{2}, p_{3}, \ldots, p_{k}$ are all the primes, p must be equal to one of them, so p is a divisor of their product. So we have that p divides $p_{1} p_{2} p_{3} \ldots p_{k}$, and p divides q, but that means p divides their difference, which is 1 . Therefore $p \leq 1$. Contradiction. Therefore there are infinitely many primes.

The Sieve of Eratosthenes

How to find all primes between 2 and n ?

The Sieve of Eratosthenes

How to find all primes between 2 and n ?
A very inefficient method of determining if a number n is prime
Try every integer $i \leq \sqrt{n}$ and see if n is divisible by i
(1) Write the numbers $2, \ldots, n$ into a list. Let $i:=2$

The Sieve of Eratosthenes

How to find all primes between 2 and n ?
A very inefficient method of determining if a number n is prime
Try every integer $i \leq \sqrt{n}$ and see if n is divisible by i
(1) Write the numbers $2, \ldots, n$ into a list. Let $i:=2$
(2) Remove all strict multiples of i from the list

The Sieve of Eratosthenes

How to find all primes between 2 and n ?
A very inefficient method of determining if a number n is prime Try every integer $i \leq \sqrt{n}$ and see if n is divisible by i
(1) Write the numbers $2, \ldots, n$ into a list. Let $i:=2$
(2) Remove all strict multiples of i from the list
(3) Let k be the smallest number present in the list s.t. $k>i$ and let $i:=k$

The Sieve of Eratosthenes

How to find all primes between 2 and n ?
A very inefficient method of determining if a number n is prime Try every integer $i \leq \sqrt{n}$ and see if n is divisible by i
(1) Write the numbers $2, \ldots, n$ into a list. Let $i:=2$
(2) Remove all strict multiples of i from the list
(3) Let k be the smallest number present in the list s.t. $k>i$ and let $i:=k$
(9) If $i>\sqrt{n}$ then stop else go to step 2

The Sieve of Eratosthenes

How to find all primes between 2 and n ?
A very inefficient method of determining if a number n is prime Try every integer $i \leq \sqrt{n}$ and see if n is divisible by i
(1) Write the numbers $2, \ldots, n$ into a list. Let $i:=2$
(2) Remove all strict multiples of i from the list
(3) Let k be the smallest number present in the list s.t. $k>i$ and let $i:=k$
(9) If $i>\sqrt{n}$ then stop else go to step 2

Testing if a number is prime can be done efficiently in polynomial time [Agrawal-Kayal-Saxena 2002], i.e., polynomial in the number of bits used to describe the input number. Efficient randomized tests had been available previously.

