Discrete Mathematics & Mathematical Reasoning
Chapter 7 (continued):
Examples in probability:
Ramsey numbers
and the probabilistic method

Kousha Etessami
U. of Edinburgh, UK
Frank Ramsey (1903-1930)
A brilliant logician/mathematician.
He studied and lectured at Cambridge University.
He died tragically young, at age 26.
Despite his early death, he did hugely influential work in several fields: logic, combinatorics, and economics.
Theorem: Suppose that in a group of 6 people every pair are either friends or enemies. Then, there are either 3 mutual friends or 3 mutual enemies.

Proof: Let \(\{A, B, C, D, E, F\} \) be the 6 people. Consider \(A \)'s friends & enemies. \(A \) has 5 relationships, so \(A \) must either have 3 friends or 3 enemies.

Suppose, for example, that \(\{B, C, D\} \) are all friends of \(A \). If some pair in \(\{B, C, D\} \) are friends, for example \(\{B, C\} \), then \(\{A, B, C\} \) are 3 mutual friends. Otherwise, \(\{B, C, D\} \) are 3 mutual enemies.

The same argument clearly works if \(A \) had 3 enemies instead of 3 friends.
Remarks on “Friends and Enemies”: 6 is the smallest number possible for finding 3 friends or 3 enemies

Note that it is possible to have 5 people, where every pair of them are either friends or enemies, such that there does not exist 3 of them who are all mutual friends or all mutual enemies:
Ramsey’s Theorem (a special case, for graphs)

Theorem: For any positive integer, \(k \), there is a positive integer, \(n \), such that in any undirected graph with \(n \) or more vertices:

either there are \(k \) vertices that are all mutually adjacent, meaning they form a \(k \)-clique,

or, there are \(k \) vertices that are all mutually non-adjacent, meaning they form a \(k \)-independent-set.

For each integer \(k \geq 1 \), let \(R(k) \) be the smallest integer \(n \geq 1 \) such that every undirected graph with \(n \) or more vertices has either a \(k \)-clique or a \(k \)-independent-set as an induced subgraph.

The numbers \(R(k) \) are called diagonal Ramsey numbers.
Proof of Ramsey’s Theorem: Consider any integer $k \geq 1$, and any graph, $G_1 = (V_1, E_1)$ with at least 2^{2k} vertices.

Initialize: $S_{\text{Friends}} := \{\};$ $S_{\text{Enemies}} := \{\};$

for $i := 1$ to $2k - 1$ do

Pick any vertex $v_i \in V_i$;

if (v_i has at least 2^{2k-i} friends in G_i) then

$S_{\text{Friends}} := S_{\text{Friends}} \cup \{v_i\};$ $V_{i+1} := \{\text{friends of } v_i\};$

else (* in this case v_i has at least 2^{2k-i} enemies in G_i *)

$S_{\text{Enemies}} := S_{\text{Enemies}} \cup \{v_i\};$ $V_{i+1} := \{\text{enemies of } v_i\};$

end if

Let $G_{i+1} = (V_{i+1}, E_{i+1})$ be the subgraph of G_i induced by V_{i+1};

end for

At the end, all vertices in S_{Friends} are mutual friends, and all vertices in S_{Enemies} are mutual enemies. Since $|S_{\text{Friends}} \cup S_{\text{Enemies}}| = 2k - 1$, either $|S_{\text{Friends}}| \geq k$ or $|S_{\text{Enemies}}| \geq k$. Done.
Remarks on the proof, and on Ramsey numbers

• The proof establishes that $R(k) \leq 2^{2k} = 4^k$.

(A more careful look at this proof shows that $R(k) \leq 2^{2k-1}$.)

• **Question:** Can we give a better upper bound on $R(k)$?

• **Question:** Can we give a good *lower* bound on $R(k)$?
Paul Erdős (1913-1996)

Immensely prolific mathematician, eccentric nomad, father of the probabilistic method in combinatorics.
Lower bounds on Ramsey numbers,
and the Probabilistic Method

Theorem (Erdös, 1947)

For all $k \geq 3$,

$$R(k) > 2^{k/2}$$

The proof uses the probabilistic method:

General idea of “the probabilistic method”: To show the existence of a hard-to-find object with a desired property, Q, try to construct a probability distribution over a sample space Ω of objects, and show that with positive probability a randomly chosen object in Ω has the property Q.
Proof that $R(k) > 2^{k/2}$ **using the probabilistic method:**

Let Ω be the set of all graphs on the vertex set $V = \{v_1, \ldots, v_n\}$. (We will later determine that $n \leq 2^{k/2}$ suffices.)

There are $2^{\binom{n}{2}}$ such graphs. Let $P : \Omega \rightarrow [0, 1]$, be the uniform probability distribution on such graphs.

So, every graph on V is equally likely. This implies for all $i \neq j$:

\[P(\{v_i, v_j\} \text{ is an edge of the graph}) = 1/2. \]

(1)

We could also define the distribution P by saying it satisfies (1), and the events “$\{v_i, v_j\}$ is an edge of the graph” are *mutually independent*, for all $i \neq j$.

There are $\binom{n}{k}$ subsets of V of size k.

Let $S_1, S_2, \ldots, S_{\binom{n}{k}}$ be an enumeration of these subsets of V.

For $i = 1, \ldots, \binom{n}{k}$, let E_i be the event that S_i forms either a k-clique or a k-independent-set in the graph. Note that:

\[P(E_i) = 2 \cdot 2^{-\binom{k}{2}} = 2^{-\binom{k}{2} + 1} \]
Proof of $R(k) > 2^{k/2}$ (continued):

Note that $E = \bigcup_{i=1}^{n \choose k} E_i$ is the event that there exists either a k-clique or a k-independent-set in the graph. But:

$$P(E) = P\left(\bigcup_{i=1}^{n \choose k} E_i\right) \leq \sum_{i=1}^{n \choose k} P(E_i) = {n \choose k} \cdot 2^{-k(2)+1}$$

Question: How small must n be so that $({n \choose k} \cdot 2^{-k(2)+1} < 1$?

For $k \geq 2$:

$$\begin{align*}
{n \choose k} &= \frac{n(n-1) \ldots (n-k+1)}{k(k-1) \ldots 1} < \frac{n^k}{2^{k-1}}
\end{align*}$$

Thus, if $n \leq 2^{k/2}$, then

$$\begin{align*}
{n \choose k} \cdot 2^{-k(2)+1} &< \frac{(2^{k/2})^k}{2^{k-1}} \cdot 2^{-k(2)+1} = \frac{2^{k^2/2}}{2^{k-1}} \cdot 2^{-k(k-1)/2+1} = 2^{2-k/2}
\end{align*}$$
Completion of the proof that $R(k) > 2^{k/2}$:

For $k \geq 4$, $2^{2-(k/2)} \leq 1$.

So, for $k \geq 4$, $P(E) < 1$, and thus $P(\Omega - E) = 1 - P(E) > 0$.

But note that $P(\Omega - E)$ is the probability that in a random graph of size $n \leq 2^{k/2}$, there is no k-clique and no k-independent-set.

Thus, since $P(\Omega - E) > 0$, such a graph must exist for any $n \leq 2^{k/2}$.

Note that we earlier argued that $R(3) = 6$, and clearly $6 > 2^{3/2} = 2.828\ldots$.

Thus, we have established that for all $k \geq 3$,

$$R(k) > 2^{k/2}.$$ \[\square\]
A Remark

In the proof, we used the following trivial but often useful fact:

Union bound

Theorem: For any (finite or countable) sequence of events \(E_1, E_2, E_3, \ldots \)

\[
P(\bigcup_i E_i) \leq \sum_i P(E_i)
\]

Proof (trivial):

\[
P(\bigcup_i E_i) = \sum_{s \in \bigcup_i E_i} P(s) \leq \sum_i \sum_{s \in E_i} P(s) = \sum_i P(E_i).
\]
Remarks on Ramsey numbers

- We have shown that

\[2^{k/2} = (\sqrt{2})^k < R(k) \leq 4^k = 2^{2k} \]

Despite decades of research by many combinatorists, nothing significantly better is known! In particular:

- no constant \(c > \sqrt{2} \) is known such that \(c^k \leq R(k) \), and
- no constant \(c' < 4 \) is known such that \(R(k) \leq (c')^k \).

For specific small \(k \), more is known:

- \(R(1) = 1 \);
- \(R(2) = 2 \);
- \(R(3) = 6 \);
- \(R(4) = 18 \);
- \(43 \leq R(5) \leq 49 \);
- \(102 \leq R(6) \leq 165 \).

\(^1\)See [Conlon,2009] for state-of-the-art upper bounds.
Remarks on Ramsey numbers

- We have shown that
 \[2^{k/2} = (\sqrt{2})^k < R(k) \leq 4^k = 2^{2k} \]

- Despite decades of research by many combinatorists, nothing significantly better is known!\(^1\) In particular:
 no constant \(c > \sqrt{2} \) is known such that \(c^k \leq R(k) \), and
 no constant \(c' < 4 \) is known such that \(R(k) \leq (c')^k \).

- For specific small \(k \), more is known:

 \[
 R(1) = 1 ; \quad R(2) = 2 ; \quad R(3) = 6 ; \quad R(4) = 18 \\
 43 \leq R(5) \leq 49 \\
 102 \leq R(6) \leq 165 \\
 \ldots
 \]

\(^1\)See [Conlon,2009] for state-of-the-art upper bounds.
Why can’t we just compute $R(k)$ exactly, for small k?

For each k, we know that $2^{k/2} < R(k) < 2^{2k}$,

So, we could try to check, exhaustively, for each r such that $2^{k/2} < r < 2^{2k}$, whether there is a graph G with r vertices such that G has no k-clique and no k-independent set.

Question: How many graphs on r vertices are there?

There are $2 \binom{r}{2} = 2^{r(r-1)/2}$ (labeled) graphs on r vertices.

So, for $r = 2^k$, we would have to check $2^{2k(2^k-1)/2}$ graphs!!

So for $k = 5$, just for $r = 2^5$, we have to check 2^{496} graphs!!
Quote attributed to Paul Erdös:

Suppose an alien force, vastly more powerful than us, landed on Earth demanding to know the value of $R(5)$, or else they would destroy our planet.
Quote attributed to Paul Erdös:

Suppose an alien force, vastly more powerful than us, landed on Earth demanding to know the value of $R(5)$, or else they would destroy our planet.

In that case, I believe we should marshal all our computers, and all our mathematicians, in an attempt to find the value.
Quote attributed to Paul Erdös:

Suppose an alien force, vastly more powerful than us, landed on Earth demanding to know the value of $R(5)$, or else they would destroy our planet.

In that case, I believe we should marshal all our computers, and all our mathematicians, in an attempt to find the value.

But suppose instead they asked us for $R(6)$.
Quote attributed to Paul Erdös:

Suppose an alien force, vastly more powerful than us, landed on Earth demanding to know the value of $R(5)$, or else they would destroy our planet.

In that case, I believe we should marshal all our computers, and all our mathematicians, in an attempt to find the value.

But suppose instead they asked us for $R(6)$. In that case, I believe we should attempt to destroy the aliens.