Discrete Mathematics & Mathematical Reasoning Predicates, Quantifiers and Proof Techniques

Colin Stirling

Informatics

Colin Stirling (Informatics)

Discrete Mathematics (Chap 1)

Today 1 / 30

Propositions can be constructed from other propositions using logical connectives

Propositions can be constructed from other propositions using logical connectives

- Negation: ¬
- Conjunction: ∧
- Disjunction: ∨
- Implication: \rightarrow
- Biconditional: ↔

.

Propositions can be constructed from other propositions using logical connectives

- Negation: ¬
- Conjunction: \land
- Disjunction: ∨
- Implication: \rightarrow
- Biconditional: ↔

The truth of a proposition is defined by the truth values of its elementary propositions and the meaning of connectives

< 回 > < 三 > < 三 >

Propositions can be constructed from other propositions using logical connectives

- Negation: ¬
- Conjunction: \land
- Disjunction: ∨
- Implication: \rightarrow
- Biconditional: ↔

The truth of a proposition is defined by the truth values of its elementary propositions and the meaning of connectives

The meaning of logical connectives can be defined using truth tables

A (10) A (10)

Examples of logical implication and equivalence

•
$$(p \land (p \rightarrow q)) \rightarrow q$$

•
$$(p \land \neg p) \rightarrow q$$

•
$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$

• :

A (1) > A (2) > A

Examples of logical implication and equivalence

•
$$(p \land (p \to q)) \to q$$

•
$$(p \land \neg p) \rightarrow q$$

• $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$

•
$$(p
ightarrow q) \leftrightarrow (\neg q
ightarrow \neg p)$$

•
$$\neg(p \land q) \leftrightarrow (\neg p \lor \neg q)$$
 De Morgan

•
$$\neg(p \lor q) \leftrightarrow (\neg p \land \neg q)$$
 De Morgan

•
$$\neg(p
ightarrow q) \leftrightarrow (p \land \neg q)$$

A (10) A (10)

Colin Stirling (Informatics)

Discrete Mathematics (Chap 1)

▶ Ξ つへの Today 4/30

In propositional logic, from

- All cats have whiskers (proposition *p*)
- Sansa is a cat (proposition q)

we cannot derive

• Sansa has whiskers (proposition r)

.

In propositional logic, from

- All cats have whiskers (proposition p)
- Sansa is a cat (proposition q)

we cannot derive

- Sansa has whiskers (proposition r)
- $(p \land q) \rightarrow r$ is not a tautology

.

In propositional logic, from

- All cats have whiskers (proposition p)
- Sansa is a cat (proposition q)

we cannot derive

- Sansa has whiskers (proposition r)
- $(p \land q) \rightarrow r$ is not a tautology

We need a language to talk about objects, their properties and their relations

< 回 > < 三 > < 三 >

Sansa the cat (with whiskers)

Colin Stirling (Informatics)

Today 5 / 30

Formally same argument as

Given the following two premises

- All students in this class understand logic
- Colin is a student in this class

A .

- **→ → →**

Formally same argument as

Given the following two premises

- All students in this class understand logic
- Colin is a student in this class

it follows that

Colin understands logic

Predicate logic

Extends propositional logic by the new features

- Variables: *x*, *y* ,*z*, ...
- Predicates: *P*(*x*), *Q*(*x*), *R*(*x*, *y*), *M*(*x*, *y*, *z*), ...
- Quantifiers: ∀, ∃

A (10) A (10) A (10)

Predicate logic

Extends propositional logic by the new features

- Variables: x, y ,z, ...
- Predicates: *P*(*x*), *Q*(*x*), *R*(*x*, *y*), *M*(*x*, *y*, *z*), ...
- Quantifiers: ∀, ∃

Predicates are a generalisation of propositions

- Can contain variables M(x, y, z)
- Variables stand for (and can be replaced by) elements from their domain
- The truth value of a predicate depends on the values of its variables

くぼう くほう くほう

P(x) is "x > 5" and x ranges over \mathbb{Z} (integers)

- *P*(8) is true
- P(-1) is false

P(x) is "x > 5" and x ranges over \mathbb{Z} (integers)

- *P*(8) is true
- P(-1) is false

C(x) is "x is a cat"; W(x) is "x has whiskers" and x ranges over animals

- C(Sansa) is true
- C(Colin) is false
- W(Sansa) is true

P(x) is "x > 5" and x ranges over \mathbb{Z} (integers)

- *P*(8) is true
- P(-1) is false

C(x) is "x is a cat"; W(x) is "x has whiskers" and x ranges over animals

- C(Sansa) is true
- C(Colin) is false
- W(Sansa) is true

D(x, y) is "x divides y" and x, y range over \mathbb{Z}^+ (positive integers)

- D(3,9) is true
- D(2,9) is false

P(x) is "x > 5" and x ranges over \mathbb{Z} (integers)

- *P*(8) is true
- P(-1) is false

C(x) is "x is a cat"; W(x) is "x has whiskers" and x ranges over animals

- C(Sansa) is true
- C(Colin) is false
- W(Sansa) is true

D(x, y) is "x divides y" and x, y range over \mathbb{Z}^+ (positive integers)

- D(3,9) is true
- *D*(2,9) is false

 $S(x_1, \ldots, x_{11}, y)$ is " $x_1 + \ldots + x_{11} = y$ "

• S(1, 2, ..., 11, 66) is true

• Universal quantifier, "For all": \forall

 $\forall x \ P(x)$ asserts that P(x) is true for every x in the assumed domain

A (10) A (10) A (10)

• Universal quantifier, "For all": \forall

 $\forall x \ P(x)$ asserts that P(x) is true for every x in the assumed domain

● Existential quantifier, "There exists": ∃

 $\exists x \ P(x)$ asserts that P(x) is true for some x in the assumed domain

(4) (5) (4) (5)

• Universal quantifier, "For all": \forall

 $\forall x \ P(x)$ asserts that P(x) is true for every x in the assumed domain

● Existential quantifier, "There exists": ∃

 $\exists x \ P(x)$ asserts that P(x) is true for some x in the assumed domain

• The quantifiers are said to bind the variable *x* in these expressions. Variables in the scope of some quantifier are called bound variables. All other variables in the expression are called free variables

A B A A B A

• Universal quantifier, "For all": \forall

 $\forall x \ P(x)$ asserts that P(x) is true for every x in the assumed domain

● Existential quantifier, "There exists": ∃

 $\exists x \ P(x)$ asserts that P(x) is true for some x in the assumed domain

- The quantifiers are said to bind the variable x in these expressions. Variables in the scope of some quantifier are called bound variables. All other variables in the expression are called free variables
- A formula that does not contain any free variables is a proposition and has a truth value

• Rule of inference

$$\frac{\forall x \ P(x)}{P(v)}$$

v is a value in assumed domain

イロト イヨト イヨト イヨト

Rule of inference

$$\frac{\forall x \ P(x)}{P(v)} \quad v \text{ is a value in assumed domain}$$

From $\forall x \ P(x)$ is true infer that P(v) is true for any value v in the assumed domain

• $\neg(\forall x \ P(x)) \leftrightarrow \exists x \ \neg P(x)$ $\neg(\exists x \ P(x)) \leftrightarrow \forall x \ \neg P(x)$

Rule of inference

$$\frac{\forall x \ P(x)}{P(v)} \quad v \text{ is a value in assumed domain}$$

From $\forall x \ P(x)$ is true infer that P(v) is true for any value v in the assumed domain

• $\neg(\forall x \ P(x)) \leftrightarrow \exists x \ \neg P(x)$ $\neg(\exists x \ P(x)) \leftrightarrow \forall x \ \neg P(x)$ It is not the case that for all $x \ P(x)$ if, and only if, P(x) is not true for some x

Rule of inference

$$\frac{\forall x \ P(x)}{P(v)} \quad v \text{ is a value in assumed domain}$$

From $\forall x \ P(x)$ is true infer that P(v) is true for any value v in the assumed domain

- $\neg(\forall x \ P(x)) \leftrightarrow \exists x \ \neg P(x)$ $\neg(\exists x \ P(x)) \leftrightarrow \forall x \ \neg P(x)$ It is not the case that for all $x \ P(x)$ if, and only if, P(x) is not true for some x
- We always assume that a domain is nonempty

 From All cats have whiskers and Sansa is a cat derive Sansa has whiskers

A (10) A (10) A (10)

- From All cats have whiskers and Sansa is a cat derive Sansa has whiskers
- *C*(*x*) is "*x* is a cat"; *W*(*x*) is "*x* has whiskers"

-

- From All cats have whiskers and Sansa is a cat derive Sansa has whiskers
- *C*(*x*) is "*x* is a cat"; *W*(*x*) is "*x* has whiskers"
- All cats have whiskers $\forall x (C(x) \rightarrow W(x))$

- From All cats have whiskers and Sansa is a cat derive Sansa has whiskers
- C(x) is "x is a cat"; W(x) is "x has whiskers"
- All cats have whiskers $\forall x \ (C(x) \rightarrow W(x))$
- Sansa is a cat C(Sansa)

4 3 5 4 3

- From All cats have whiskers and Sansa is a cat derive Sansa has whiskers
- C(x) is "x is a cat"; W(x) is "x has whiskers"
- All cats have whiskers $\forall x (C(x) \rightarrow W(x))$
- Sansa is a cat C(Sansa)
- How do we get W(Sansa)?

- From All cats have whiskers and Sansa is a cat derive Sansa has whiskers
- C(x) is "x is a cat"; W(x) is "x has whiskers"
- All cats have whiskers $\forall x \ (C(x) \rightarrow W(x))$
- Sansa is a cat C(Sansa)
- How do we get W(Sansa) ?
- From $\forall x \ (C(x) \rightarrow W(x))$ we derive $C(Sansa) \rightarrow W(Sansa)$

4 E N 4 E N

- From All cats have whiskers and Sansa is a cat derive Sansa has whiskers
- *C*(*x*) is "*x* is a cat"; *W*(*x*) is "*x* has whiskers"
- All cats have whiskers $\forall x (C(x) \rightarrow W(x))$
- Sansa is a cat *C*(*Sansa*)
- How do we get W(Sansa) ?
- From $\forall x \ (C(x) \rightarrow W(x))$ we derive $C(Sansa) \rightarrow W(Sansa)$
- By propositional reasoning, $(p \rightarrow q \text{ and } p)$ implies q

A D A D A D A

- From All cats have whiskers and Sansa is a cat derive Sansa has whiskers
- C(x) is "x is a cat"; W(x) is "x has whiskers"
- All cats have whiskers $\forall x (C(x) \rightarrow W(x))$
- Sansa is a cat *C*(*Sansa*)
- How do we get W(Sansa) ?
- From $\forall x \ (C(x) \rightarrow W(x))$ we derive $C(Sansa) \rightarrow W(Sansa)$
- By propositional reasoning, (*p* → *q* and *p*) implies *q* So, (*C*(*Sansa*) → *W*(*Sansa*) and *C*(*Sansa*)) implies *W*(*Sansa*)

< 回 > < 回 > < 回 > …
Given the following three premises

- All hummingbirds are richly coloured
- No large birds live on honey
- Birds that do not live on honey are dull in colour

Given the following three premises

- All hummingbirds are richly coloured
- No large birds live on honey
- Birds that do not live on honey are dull in colour

Does it follow that

• Hummingbirds are small

Given the following three premises

- All hummingbirds are richly coloured
- No large birds live on honey
- Birds that do not live on honey are dull in colour

Does it follow that

- Hummingbirds are small
- Uses derived rule of transitivity: from
 - $\forall x(A(x) \rightarrow B(x))$
 - $\forall x(B(x) \rightarrow C(x))$

Given the following three premises

- All hummingbirds are richly coloured
- No large birds live on honey
- Birds that do not live on honey are dull in colour

Does it follow that

- Hummingbirds are small
- Uses derived rule of transitivity: from

• $\forall x(A(x) \rightarrow B(x))$ • $\forall x(B(x) \rightarrow C(x))$

 $\forall x (A(x) \rightarrow C(x)) \text{ follows}$

BA 4 BA

• Rule of inference

$$\frac{P(c)}{\forall x \ P(x)} \ c \text{ is an arbitrary element of domain}$$

イロト イヨト イヨト イヨト

• Rule of inference

$$\frac{P(c)}{\forall x \ P(x)} \ c \text{ is an arbitrary element of domain}$$

• Derived rule of transitivity (using transitivity of implication)

A (10) A (10) A (10)

• Rule of inference

$$\frac{P(c)}{\forall x \ P(x)} \ c \text{ is an arbitrary element of domain}$$

- Derived rule of transitivity (using transitivity of implication)
- Example: if *n* is an odd integer then n^2 is odd

Rule of inference

$$\frac{P(c)}{\forall x \ P(x)} \ c \text{ is an arbitrary element of domain}$$

- Derived rule of transitivity (using transitivity of implication)
- Example: if *n* is an odd integer then n^2 is odd
- First, notice the quantifier is implicit

Rule of inference

$$\frac{P(c)}{\forall x \ P(x)} \ c \text{ is an arbitrary element of domain}$$

- Derived rule of transitivity (using transitivity of implication)
- Example: if *n* is an odd integer then n^2 is odd
- First, notice the quantifier is implicit
- Let P(n) be "*n* is odd" and Q(n) be "the square of *n* is odd"

Rule of inference

$$\frac{P(c)}{\forall x \ P(x)} \ c \text{ is an arbitrary element of domain}$$

- Derived rule of transitivity (using transitivity of implication)
- Example: if *n* is an odd integer then *n*² is odd
- First, notice the quantifier is implicit
- Let P(n) be "*n* is odd" and Q(n) be "the square of *n* is odd"
- So is: $\forall x \ (P(x) \rightarrow Q(x))$ where domain is integers

• Assume *n* is an arbitrary element of the domain

ъ

• • • • • • • • • • • • •

- Assume *n* is an arbitrary element of the domain
- Prove that $P(n) \rightarrow Q(n)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Assume *n* is an arbitrary element of the domain
- Prove that $P(n) \rightarrow Q(n)$
- That is, assume *n* is odd, then show n^2 is odd

A (1) > A (1) > A

- Assume *n* is an arbitrary element of the domain
- Prove that $P(n) \rightarrow Q(n)$
- That is, assume *n* is odd, then show n^2 is odd
- Use the definition/properties of P(n), *n* is odd

- Assume n is an arbitrary element of the domain
- Prove that $P(n) \rightarrow Q(n)$
- That is, assume *n* is odd, then show n^2 is odd
- Use the definition/properties of P(n), *n* is odd
- P(n) provided that for some k, n = 2k + 1

- Assume n is an arbitrary element of the domain
- Prove that $P(n) \rightarrow Q(n)$
- That is, assume *n* is odd, then show n^2 is odd
- Use the definition/properties of P(n), *n* is odd
- P(n) provided that for some k, n = 2k + 1
- So $n^2 = (2k+1)^2 = 2(2k^2+2k)+1$

- Assume n is an arbitrary element of the domain
- Prove that $P(n) \rightarrow Q(n)$
- That is, assume *n* is odd, then show n^2 is odd
- Use the definition/properties of P(n), *n* is odd
- P(n) provided that for some k, n = 2k + 1
- So $n^2 = (2k+1)^2 = 2(2k^2+2k)+1$
- n^2 has the form for some m, $n^2 = 2m + 1$; so Q(n)

Any odd integer is the difference of two squares

Colin Stirling (Informatics)

Discrete Mathematics (Chap 1)

Today 15 / 30

• • • • • • • • • • • • •

• Uses equivalence of $(p \rightarrow q)$ and $(\neg q \rightarrow \neg p)$

- Uses equivalence of $(p \rightarrow q)$ and $(\neg q \rightarrow \neg p)$
- So, $\forall x \ (A(x) \rightarrow B(x)) \leftrightarrow \forall x \ (\neg B(x) \rightarrow \neg A(x))$

- Uses equivalence of $(p \rightarrow q)$ and $(\neg q \rightarrow \neg p)$
- So, $\forall x \ (A(x) \rightarrow B(x)) \leftrightarrow \forall x \ (\neg B(x) \rightarrow \neg A(x))$
- Assume c is an arbitrary element of the domain

イベト イラト イラト

- Uses equivalence of $(p \rightarrow q)$ and $(\neg q \rightarrow \neg p)$
- So, $\forall x \ (A(x) \rightarrow B(x)) \leftrightarrow \forall x \ (\neg B(x) \rightarrow \neg A(x))$
- Assume *c* is an arbitrary element of the domain
- Prove that $\neg B(c) \rightarrow \neg A(c)$

- Uses equivalence of $(p \rightarrow q)$ and $(\neg q \rightarrow \neg p)$
- So, $\forall x \ (A(x) \rightarrow B(x)) \leftrightarrow \forall x \ (\neg B(x) \rightarrow \neg A(x))$
- Assume *c* is an arbitrary element of the domain
- Prove that $\neg B(c) \rightarrow \neg A(c)$
- That is, assume $\neg B(c)$ then show $\neg A(c)$

- Uses equivalence of $(p \rightarrow q)$ and $(\neg q \rightarrow \neg p)$
- So, $\forall x \ (A(x) \rightarrow B(x)) \leftrightarrow \forall x \ (\neg B(x) \rightarrow \neg A(x))$
- Assume *c* is an arbitrary element of the domain
- Prove that $\neg B(c) \rightarrow \neg A(c)$
- That is, assume $\neg B(c)$ then show $\neg A(c)$
- Use the definition/properties of $\neg B(c)$

if x + y is even, then x and y have the same parity

Colin Stirling (Informatics)

Discrete Mathematics (Chap 1)

Today 17 / 30

Proof Let $n, m \in \mathbb{Z}$ be arbitrary. We will prove that if n and m do not have the same parity then n + m is odd. Without loss of generality we assume that n is odd and m is even, that is n = 2k + 1 for some $k \in \mathbb{Z}$, and $m = 2\ell$ for some $\ell \in \mathbb{Z}$. But then

 $n + m = 2k + 1 + 2\ell = 2(k + \ell) + 1$. And thus n + m is odd. Now by equivalence of a statement with it contrapositive derive that if n + m is even, then n and m have the same parity.

A D A D A D A

If n = ab where a, b are positive integers, then $a \le \sqrt{n}$ or $b \le \sqrt{n}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Want to prove that p is true

• • • • • • • • • • • • •

- Want to prove that p is true
- Assume ¬p

• • • • • • • • • • • • •

- Want to prove that p is true
- Assume $\neg p$
- Derive both q and $\neg q$ (a contradiction equivalent to False)

A > + = + + =

- Want to prove that p is true
- Assume ¬p
- Derive both q and $\neg q$ (a contradiction equivalent to False)
- Therefore, $\neg \neg p$ which is equivalent to p

ъ.

$\sqrt{2}$ is irrational

Colin Stirling (Informatics)

$\sqrt{2}$ is irrational

Proof Assume towards a contradiction that $\sqrt{2}$ is rational, that is there are integers a and b with no common factor other than 1, such that $\sqrt{2} = a/b$. In that case $2 = a^2/b^2$. Multiplying both sides by b^2 , we have $a^2 = 2b^2$. Since b is an integer, so is b^2 , and thus a^2 is even. As we saw previously this implies that a is even, that is there is an integer c such that a = 2c. Hence $2b^2 = 4c^2$, hence $b^2 = 2c^2$. Now, since c is an integer, so is c^2 , and thus b^2 is even. Again, we can conclude that b is even. Thus a and b have a common factor 2, contradicting the assertion that a and b have no common factor other than 1. This shows that the original assumption that $\sqrt{2}$ is rational is false, and that $\sqrt{2}$ must be irrational.

There are infinitely many primes

Colin Stirling (Informatics)

Discrete Mathematics (Chap 1)

Today 21 / 30

• • • • • • • • • • • • •

There are infinitely many primes

Lemma Every natural number greater than one is either prime or it has a prime divisor

• • • • • • • • • • • • •

There are infinitely many primes

Lemma Every natural number greater than one is either prime or it has a prime divisor

Proof Suppose towards a contradiction that there are only finitely many primes $p_1, p_2, p_3, \ldots, p_k$. Consider the number $q = p_1 p_2 p_3 \ldots p_k + 1$, the product of all the primes plus one. By hypothesis *q* cannot be prime because it is strictly larger than all the primes. Thus, by the lemma, it has a prime divisor, *p*. Because $p_1, p_2, p_3, \ldots, p_k$ are all the primes, *p* must be equal to one of them, so p is a divisor of their product. So we have that *p* divides $p_1 p_2 p_3 \ldots p_k$, and *p* divides *q*, but that means *p* divides their difference, which is 1. Therefore $p \le 1$. Contradiction. Therefore there are infinitely many primes.
Proof by cases

• To prove a conditional statement of the form

$$(p_1 \lor \cdots \lor p_k) \to q$$

Use the tautology

$$((p_1 \lor \cdots \lor p_k) \to q) \leftrightarrow ((p_1 \to q) \land \cdots \land (p_k \to q))$$

• Each of the implications $p_i \rightarrow q$ is a case

If *n* is an integer then $n^2 \ge n$

Colin Stirling (Informatics)

Discrete Mathematics (Chap 1)

■ ▶ ■ つへの Today 23/30

イロト イヨト イヨト イヨト

Proof of $\exists x \ P(x)$

Rule of inference

$$\frac{P(v)}{\exists x \ P(x)} \quad v \text{ is a value in the domain}$$

イロト イヨト イヨト イヨト

Proof of $\exists x \ P(x)$

Rule of inference

$$\frac{P(v)}{\exists x \ P(x)} \quad v \text{ is a value in the domain}$$

Constructive proof: exhibit an actual witness *w* from the domain such that P(w) is true. Therefore, $\exists x P(x)$

一日

There exists a positive integer that can be written as the sum of cubes of positive integers in two different ways

- 4 The built

There exists a positive integer that can be written as the sum of cubes of positive integers in two different ways

• 1729 is such a number because

Colin Stirling (Informatics)

Discrete Mathematics (Chap 1)

Today 25 / 30

There exists a positive integer that can be written as the sum of cubes of positive integers in two different ways

- 1729 is such a number because
- $10^3 + 9^3 = 1729 = 12^3 + 1^3$

Nonconstructive proof of $\exists x P(x)$

Nonconstructive proof of $\exists x P(x)$

• Show that there must be a value v such that P(v) is true

A (10) A (10) A (10)

Nonconstructive proof of $\exists x P(x)$

- Show that there must be a value v such that P(v) is true
- But we don't know what this value v is

There exist irrational numbers x and y such that x^{y} is rational

-

• • • • • • • • • • • • •

There exist irrational numbers x and y such that x^{y} is rational

Proof We need only prove the existence of at least one example. Consider the case $x = \sqrt{2}$ and $y = \sqrt{2}$. We distinguish two cases: Case $\sqrt{2}^{\sqrt{2}}$ is rational. In that case we have shown that for the irrational numbers $x = y = \sqrt{2}$, we have that x^y is rational Case $\sqrt{2}^{\sqrt{2}}$ is irrational. In that case consider $x = \sqrt{2}^{\sqrt{2}}$ and $y = \sqrt{2}$. We then have that

$$x^{y} = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}\sqrt{2}} = \sqrt{2}^{2} = 2$$

But since 2 is rational, we have shown that for $x = \sqrt{2}^{\sqrt{2}}$ and $y = \sqrt{2}$, we have that x^y is rational We have thus shown that in any case there exist some irrational numbers *x* and *y* such that x^y is rational

向下 イヨト イヨト ニヨ

Disproving $\forall x P(x)$ with a counter-example

• $\neg \forall x \ P(x)$ is equivalent to $\exists x \ \neg P(x)$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Disproving $\forall x \ P(x)$ with a counter-example

- $\neg \forall x \ P(x)$ is equivalent to $\exists x \ \neg P(x)$
- To establish that $\neg \forall x P(x)$ is true find a *w* such that P(w) is false

A (10) A (10)

Disproving $\forall x P(x)$ with a counter-example

- $\neg \forall x \ P(x)$ is equivalent to $\exists x \ \neg P(x)$
- To establish that $\neg \forall x P(x)$ is true find a *w* such that P(w) is false
- So, *w* is a counterexample to the assertion $\forall x P(x)$

< 回 > < 回 > < 回 > -

Every positive integer is the sum of the squares of 3 integers

< ロ > < 同 > < 回 > < 回 >

Every positive integer is the sum of the squares of 3 integers

The integer 7 is a counterexample. So the claim is false

A (10) A (10) A (10)

• Every real number has an inverse w.r.t addition (domain \mathbb{R})

$$\forall x \; \exists y \; (x+y=0)$$

A (10) A (10)

• Every real number has an inverse w.r.t addition (domain \mathbb{R})

$$\forall x \exists y \ (x+y=0)$$

Every real number except zero has an inverse w.r.t multiplication

$$\forall x \ (x \neq 0 \ \rightarrow \ \exists y \ (x \times y = 1)$$

• Every real number has an inverse w.r.t addition (domain \mathbb{R})

$$\forall x \exists y \ (x+y=0)$$

• Every real number except zero has an inverse w.r.t multiplication

$$\forall x \ (x \neq 0 \ \rightarrow \ \exists y \ (x \times y = 1))$$

• $\lim_{x\to a} f(x) = b$

$$\forall \epsilon \exists \delta \forall x \ (0 < |x - a| < \delta \rightarrow |f(x) - b| < \epsilon)$$

• Every real number has an inverse w.r.t addition (domain \mathbb{R})

$$\forall x \exists y \ (x+y=0)$$

• Every real number except zero has an inverse w.r.t multiplication

$$\forall x \ (x \neq 0 \ \rightarrow \ \exists y \ (x \times y = 1)$$

• $\lim_{x\to a} f(x) = b$

$$\forall \epsilon \exists \delta \forall x (0 < |x - a| < \delta \rightarrow |f(x) - b| < \epsilon)$$
$$\neg(\lim_{x \to a} f(x) = b)$$

$$\exists \epsilon \; \forall \delta \; \exists x \; ((0 < |x - a| < \delta) \land (|f(x) - b| \ge \epsilon))$$

Δ -