Discrete Mathematics & Mathematical Reasoning
Greatest Common Divisors

Colin Stirling

Informatics

Colin Stirling (Informatics)

Discrete Mathematics (Chap 4)



Greatest common divisor

Definition

Let a, b € Z*.The largest integer d such that d|a and d|b is called the
greatest common divisor of a and b, written gcd(a, b)
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gcd(36,24) =12
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Greatest common divisor

Definition
Let a, b € Z*.The largest integer d such that d|a and d|b is called the
greatest common divisor of a and b, written gcd(a, b)

gcd(36,24) =12

gcd(22,9) =1
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Greatest common divisor

Definition
Let a, b € Z*.The largest integer d such that d|a and d|b is called the
greatest common divisor of a and b, written gcd(a, b)

gcd(36,24) =12

gcd(22,9) =1
Definition
The integers a and b are relatively prime (coprime) iff gcd(a, b) = 1 J
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Greatest common divisor

Definition
Let a, b € Z*.The largest integer d such that d|a and d|b is called the
greatest common divisor of a and b, written gcd(a, b)

gcd(36,24) =12

gcd(22,9) =1
Definition
The integers a and b are relatively prime (coprime) iff gcd(a, b) = 1 J

Although 9 and 22 are coprime they are both composite
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Gced by prime factorisations

Suppose that the prime factorisations of a and b are

a=p{'pg---pr b=py Pt pr
where each exponent is a nonnegative integer (possibly zero)
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Gced by prime factorisations

Suppose that the prime factorisations of a and b are

a=pfpg- - pfr b=plpg - pp

where each exponent is a nonnegative integer (possibly zero)

min(ay,by) ,.min(az,bs)

ged(a, b) = p; P> P

min(an,bn)
n
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Gced by prime factorisations

Suppose that the prime factorisations of a and b are

a=pfpg- - pfr b=plpg - pp

where each exponent is a nonnegative integer (possibly zero)

min(ay,by) min(az,b2)

ged(a, b) = p; [ P

min(an,bn)
n

This number clearly divides a and b. No larger number can divide both
a and b. Proof by contradiction and the prime factorisation of a
postulated larger divisor.
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Gced by prime factorisations

Suppose that the prime factorisations of a and b are
a=p{'pg---pr b=py Pt pr
where each exponent is a nonnegative integer (possibly zero)

gcd(a, b) — p;nin(ahb1 )prznin(327b2) o prn;]in(an’bn)

This number clearly divides a and b. No larger number can divide both
a and b. Proof by contradiction and the prime factorisation of a
postulated larger divisor.

Factorisation is a very inefficient method to compute gcd J
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Euclidian algorithm: efficient for computing gcd

Euclidian algorithm

algorithm gcd(x,Vv)
if y =

=0

then return (x)

else return(gcd(y,x mod y))
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Euclidian algorithm: efficient for computing gcd

Euclidian algorithm

algorithm gcd(x,Vv)
if vy =0
then return (x)
else return(gcd(y,x mod y))

The Euclidian algorithm relies on

Vx,y € Z* (ged(x, y) = ged(y, x mod y))
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Euclidian algorithm (proof of correctness)
Lemma

If x = yq+ r, where x, y, q, and r are positive integers, then
gcd(x, y) = gcd(y, r). (Consider r = x mod y and q = x div y)
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Euclidian algorithm (proof of correctness)

Lemma

If x = yq+ r, where x, y, q, and r are positive integers, then
gcd(x, y) = gcd(y, r). (Consider r = x mod y and q = x div y)

Proof.

(=) Suppose that d divides both x and y. Then d also divides

X — yq = r. Hence, any common divisor of x and y must also be a
common divisor of y and r.

(<) Suppose that d divides both y and r. Then d also divides

yq + r = x. Hence, any common divisor of y and r must also be a
common divisor of x and y.

Therefore, gcd(x, y) = gecd(y, r) O
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Gced as a linear combination

Theorem (Bézout’s theorem)

If x and y are positive integers, then there exist integers a and b such
that gcd(x, y) = ax + by
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Gced as a linear combination

Theorem (Bézout’s theorem)

If x and y are positive integers, then there exist integers a and b such
that gcd(x, y) = ax + by

Proof.

Nonconstructive proof. Let S be the set of positive integers ax + by
(where a or b may be negative integers); S is non-empty as it includes
x + y. By the well-ordering principle S has a least element c. So

¢ = ax + by for some a and b. If d|x and d|y then d|ax and d|by and
so d|(ax + by), that is d|c. We now show c|x and c|y which means
that ¢ = gcd(x, y). Assume ¢ fx. So x =qgc+ rwhere0 < r < c.
Now r = x — qc = x — q(ax + by). Thatis, r = (1 — ga)x + (—gb)y, so
r € S which contradicts that c is the least elementin Sas r < c. The
same argument shows c|y. O

v
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Bézout’s theorem: constructive proof
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Bézout’s theorem: constructive proof

Extended Euclidian algorithm
algorithm e-gcd(x,V)

if y =0
then return(x, 1, 0)
else

(d, a, b) := e-gcd(y, x mod V)
return((d, b, a - ((x div y) * b)))
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Bézout’s theorem: constructive proof

Extended Euclidian algorithm
algorithm e-gcd(x,V)

if y =0
then return(x, 1, 0)
else

(d, a, b) := e-gcd(y, x mod V)
return((d, b, a - ((x div y) * b)))

@ e-gcd(24,9)
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Bézout’s theorem: constructive proof

Extended Euclidian algorithm
algorithm e-gcd(x,V)

if y =0
then return(x, 1, 0)
else
(d, a, b) := e-gcd(y, x mod V)

return((d, b, a - ((x div y) * b)))

@ e-gcd(24,9)
@ e-gcd(22,9)
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Bézout’s theorem: constructive proof

Extended Euclidian algorithm
algorithm e-gcd(x,vV)

if vy =0
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Bézout’s theorem: constructive proof

Extended Euclidian algorithm
algorithm e-gcd(x,vV)

if vy =0
then return(x, 1, 0)
else
(d, a, b) := e—-gcd(y, x mod Vy)
return((d, b, a - ((x div y) * b)))

Correctness proof for computing Bézout coefficients
@ Letx=yq+rwherer=xmodyandqg=xdivy
@ Sor=x-yq
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Bézout’s theorem: constructive proof

Extended Euclidian algorithm
algorithm e-gcd(x,vV)

if vy =0
then return(x, 1, 0)
else
(d, a, b) := e—-gcd(y, x mod Vy)
return((d, b, a - ((x div y) * b)))

Correctness proof for computing Bézout coefficients
@ Letx=yq+rwherer=xmodyandqg=xdivy
@ Sor=x-yq
@ If d = ay + br then
d=ay+b(x—yq)=>bx+(a—gb)y
@ Basecase y =0: e-gcd(x,y) =(x,1,0)and x =1+« x+0xy
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Further properties
Theorem

If a, b, c are positive integers such that gcd(a, b) = 1 and a|bc then a|c

J
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Further properties
Theorem

If a, b, c are positive integers such that gcd(a, b) = 1 and a|bc then a|c

Proof.

Because gcd(a, b) = 1, by Bézout’s theorem there are integers s and ¢
such that sa+ tb = 1. So, sac + tbc = c. Assume a|bc. Therefore,
altbc and a|sac, so al(sac + tbc); that is, alc. O
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Theorem
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Proof.

Because gcd(a, b) = 1, by Bézout’s theorem there are integers s and ¢
such that sa+ tb = 1. So, sac + tbc = c. Assume a|bc. Therefore,
altbc and a|sac, so al(sac + tbc); that is, alc. O

v

Theorem

Let m be a positive integer and let a, b, ¢ be integers. If
ac = bc (mod m) and gecd(c, m) = 1 then a = b (mod m)
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Further properties

Theorem
If a, b, c are positive integers such that gcd(a, b) = 1 and a|bc then a|c

Proof.

Because gcd(a, b) = 1, by Bézout’s theorem there are integers s and ¢
such that sa+ tb = 1. So, sac + tbc = c. Assume a|bc. Therefore,
altbc and a|sac, so al(sac + tbc); that is, alc. O
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Theorem

Let m be a positive integer and let a, b, ¢ be integers. If
ac = bc (mod m) and gecd(c, m) = 1 then a = b (mod m)

Proof.

Because ac = bc (mod m), it follows m|(ac — bc); so, m|c(a — b). By
the result above because gcd(c, m) = 1, it follows that m|(a— b). [

Colin Stirling (Informatics) Discrete Mathematics (Chap 4) Today 9/9



