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Greatest common divisor

Definition
Let a,b ∈ Z+.The largest integer d such that d |a and d |b is called the
greatest common divisor of a and b, written gcd(a,b)

gcd(36,24) = 12

gcd(22,9) = 1

Definition
The integers a and b are relatively prime (coprime) iff gcd(a,b) = 1

Although 9 and 22 are coprime they are both composite
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Gcd by prime factorisations

Suppose that the prime factorisations of a and b are

a = pa1
1 pa2

2 · · · p
an
n b = pb1

1 pb2
2 · · · p

bn
n

where each exponent is a nonnegative integer (possibly zero)

gcd(a,b) = pmin(a1,b1)
1 pmin(a2,b2)

2 · · · pmin(an,bn)
n

This number clearly divides a and b. No larger number can divide both
a and b. Proof by contradiction and the prime factorisation of a
postulated larger divisor.

Factorisation is a very inefficient method to compute gcd

Colin Stirling (Informatics) Discrete Mathematics (Chap 4) Today 3 / 9



Gcd by prime factorisations

Suppose that the prime factorisations of a and b are

a = pa1
1 pa2

2 · · · p
an
n b = pb1

1 pb2
2 · · · p

bn
n

where each exponent is a nonnegative integer (possibly zero)

gcd(a,b) = pmin(a1,b1)
1 pmin(a2,b2)

2 · · · pmin(an,bn)
n

This number clearly divides a and b. No larger number can divide both
a and b. Proof by contradiction and the prime factorisation of a
postulated larger divisor.

Factorisation is a very inefficient method to compute gcd

Colin Stirling (Informatics) Discrete Mathematics (Chap 4) Today 3 / 9



Gcd by prime factorisations

Suppose that the prime factorisations of a and b are

a = pa1
1 pa2

2 · · · p
an
n b = pb1

1 pb2
2 · · · p

bn
n

where each exponent is a nonnegative integer (possibly zero)

gcd(a,b) = pmin(a1,b1)
1 pmin(a2,b2)

2 · · · pmin(an,bn)
n

This number clearly divides a and b. No larger number can divide both
a and b. Proof by contradiction and the prime factorisation of a
postulated larger divisor.

Factorisation is a very inefficient method to compute gcd

Colin Stirling (Informatics) Discrete Mathematics (Chap 4) Today 3 / 9



Gcd by prime factorisations

Suppose that the prime factorisations of a and b are

a = pa1
1 pa2

2 · · · p
an
n b = pb1

1 pb2
2 · · · p

bn
n

where each exponent is a nonnegative integer (possibly zero)

gcd(a,b) = pmin(a1,b1)
1 pmin(a2,b2)

2 · · · pmin(an,bn)
n

This number clearly divides a and b. No larger number can divide both
a and b. Proof by contradiction and the prime factorisation of a
postulated larger divisor.

Factorisation is a very inefficient method to compute gcd

Colin Stirling (Informatics) Discrete Mathematics (Chap 4) Today 3 / 9



Euclidian algorithm: efficient for computing gcd

Euclidian algorithm

algorithm gcd(x,y)
if y = 0
then return(x)
else return(gcd(y,x mod y))

The Euclidian algorithm relies on

∀x , y ∈ Z+ (gcd(x , y) = gcd(y , x mod y))
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Euclidian algorithm (proof of correctness)

Lemma
If x = yq + r , where x , y , q, and r are positive integers, then
gcd(x , y) = gcd(y , r). (Consider r = x mod y and q = x div y)

Proof.
(⇒) Suppose that d divides both x and y . Then d also divides
x − yq = r . Hence, any common divisor of x and y must also be a
common divisor of y and r .
(⇐) Suppose that d divides both y and r . Then d also divides
yq + r = x . Hence, any common divisor of y and r must also be a
common divisor of x and y .
Therefore, gcd(x , y) = gcd(y , r)
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Gcd as a linear combination

Theorem (Bézout’s theorem)
If x and y are positive integers, then there exist integers a and b such
that gcd(x , y) = ax + by

Proof.
Nonconstructive proof. Let S be the set of positive integers ax + by
(where a or b may be negative integers); S is non-empty as it includes
x + y . By the well-ordering principle S has a least element c. So
c = ax + by for some a and b. If d |x and d |y then d |ax and d |by and
so d |(ax + by), that is d |c. We now show c|x and c|y which means
that c = gcd(x , y). Assume c 6 | x . So x = qc + r where 0 < r < c.
Now r = x − qc = x − q(ax + by). That is, r = (1− qa)x + (−qb)y , so
r ∈ S which contradicts that c is the least element in S as r < c. The
same argument shows c|y .
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Bézout’s theorem: constructive proof

Extended Euclidian algorithm

algorithm e-gcd(x,y)
if y = 0
then return(x, 1, 0)
else
(d, a, b) := e-gcd(y, x mod y)
return((d, b, a - ((x div y) * b)))

e-gcd(24,9)
e-gcd(22,9)
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if y = 0
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else
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Correctness proof for computing Bézout coefficients
Let x = yq + r where r = x mod y and q = x div y
So r = x − yq
If d = ay + br then
d = ay + b(x − yq) = bx + (a− qb)y
Base case y = 0: e-gcd(x , y) = (x ,1,0) and x = 1 ∗ x + 0 ∗ y
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Further properties
Theorem
If a,b, c are positive integers such that gcd(a,b) = 1 and a|bc then a|c

Proof.
Because gcd(a,b) = 1, by Bézout’s theorem there are integers s and t
such that sa + tb = 1. So, sac + tbc = c. Assume a|bc. Therefore,
a|tbc and a|sac, so a|(sac + tbc); that is, a|c.

Theorem
Let m be a positive integer and let a,b, c be integers. If
ac ≡ bc (mod m) and gcd(c,m) = 1 then a ≡ b (mod m)

Proof.
Because ac ≡ bc (mod m), it follows m|(ac − bc); so, m|c(a− b). By
the result above because gcd(c,m) = 1, it follows that m|(a− b).
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