Discrete Mathematics & Mathematical Reasoning Arithmetic Modulo *m*, Primes

Colin Stirling

Informatics

Definition

If a and b are integers with $a \neq 0$, then a divides b, written a|b, if there exists an integer c such that b = ac.

b is a multiple of a and a is a factor of b

Definition

If a and b are integers with $a \neq 0$, then a divides b, written a|b, if there exists an integer c such that b = ac.

b is a multiple of a and a is a factor of b

 $3 \mid (-12)$ $3 \mid 0$ $3 \not \mid 7$ (where $\not \mid$ "not divides")

Definition

If a and b are integers with $a \neq 0$, then a divides b, written a|b, if there exists an integer c such that b = ac.

b is a multiple of a and a is a factor of b

 $3 \mid (-12)$ $3 \mid 0$ $3 \not \mid 7$ (where $\not \mid$ "not divides")

Theorem

- If a|b, then a|bc
- 3 If a|b and b|c, then a|c

Definition

If a and b are integers with $a \neq 0$, then a divides b, written $a \mid b$, if there exists an integer c such that b = ac.

b is a multiple of a and a is a factor of b

 $3 \mid (-12)$ $3 \mid 0$ $3 \nmid 7$ (where \(\frac{1}{2} \) "not divides")

Theorem

- If a|b and a|c, then a|(b + c)
- If a|b, then a|bc
- If a|b and b|c, then a|c

Proof.

We just prove the first; the others are similar. Assume a|b and a|c. So, there exists integers d, e such that b = da and c = ea. So b+c=da+ea=(d+e)a and, therefore, a|(b+c).

Theorem

If a is an integer and d a positive integer, then there are unique integers q and r, with $0 \le r < d$, such that a = dq + r

Theorem

If a is an integer and d a positive integer, then there are unique integers q and r, with $0 \le r < d$, such that a = dq + r

q is quotient and r the remainder; $q = a \operatorname{div} d$ and $r = a \operatorname{mod} d$

Theorem

If a is an integer and d a positive integer, then there are unique integers q and r, with $0 \le r < d$, such that a = dq + r

q is quotient and r the remainder; $q = a \operatorname{div} d$ and $r = a \operatorname{mod} d$

$$a = 102$$
 and $d = 12$ $q = 8$ and $r = 6$ $102 = 12 \cdot 8 + 6$

Theorem

If a is an integer and d a positive integer, then there are unique integers q and r, with $0 \le r < d$, such that a = dq + r

q is quotient and r the remainder; $q = a \operatorname{div} d$ and $r = a \operatorname{mod} d$

$$a = 102$$
 and $d = 12$ $q = 8$ and $r = 6$ $102 = 12 \cdot 8 + 6$
 $a = -14$ and $d = 6$ $q = -3$ and $r = 4$ $-14 = 6 \cdot (-3) + 4$

Theorem

If a is an integer and d a positive integer, then there are unique integers q and r, with $0 \le r < d$, such that a = dq + r

q is quotient and r the remainder; q = a div d and $r = a \mod d$ a = 102 and d = 12 q = 8 and r = 6 $102 = 12 \cdot 8 + 6$ a = -14 and d = 6 q = -3 and r = 4 $-14 = 6 \cdot (-3) + 4$

Proof.

Let q be the largest integer such that $dq \le a$; then r = a - dq and so, a = dq + r for $0 \le r < d$: if $r \ge d$ then $d(q+1) \le a$ which contradicts that q is largest. So, there is at least one such q and r. Assume that there is more than one: $a = dq_1 + r_1$, $a = dq_2 + r_2$, and $(q_1, r_1) \ne (q_2, r_2)$. If $q_1 = q_2$ then $r_1 = a - dq_1 = a - dq_2 = r_2$. Assume $q_1 \ne q_2$; now we obtain a contradiction; as $dq_1 + r_1 = dq_2 + r_2$, $d = (r_1 - r_2)/(q_2 - q_1)$ which is impossible because $r_1 - r_2 < d$.

Definition

If a and b are integers and m is a positive integer, then a is congruent to b modulo m, written $a \equiv b \pmod{m}$, iff $m \mid (a - b)$

• $17 \equiv 5 \pmod{6}$ because 6 divides 17 - 5 = 12

Definition

If a and b are integers and m is a positive integer, then a is congruent to b modulo m, written $a \equiv b \pmod{m}$, iff $m \mid (a - b)$

- $17 \equiv 5 \pmod{6}$ because 6 divides 17 5 = 12
- $-17 \not\equiv 5 \pmod{6}$ because 6 $\not\mid (-22)$

Definition

If a and b are integers and m is a positive integer, then a is congruent to b modulo m, written $a \equiv b \pmod{m}$, iff $m \mid (a - b)$

- $17 \equiv 5 \pmod{6}$ because 6 divides 17 5 = 12
- $-17 \not\equiv 5 \pmod{6}$ because 6 $\not\mid (-22)$
- $-17 \equiv 1 \pmod{6}$

Definition

If a and b are integers and m is a positive integer, then a is congruent to b modulo m, written $a \equiv b \pmod{m}$, iff $m \mid (a - b)$

- $17 \equiv 5 \pmod{6}$ because 6 divides 17 5 = 12
- $-17 \not\equiv 5 \pmod{6}$ because 6 $\not\mid (-22)$
- $-17 \equiv 1 \pmod{6}$
- 24 ≠ 14 (mod 6) because 6 / 10

Congruence is an equivalence relation

Theorem

 $a \equiv b \pmod{m}$ iff $a \mod m = b \mod m$

Congruence is an equivalence relation

Theorem

 $a \equiv b \pmod{m}$ iff $a \mod m = b \mod m$

Proof.

Assume $a \equiv b \pmod{m}$; so m|(a-b). If $a = q_1m + r_1$ and $b = q_2m + r_2$ where $0 \le r_1 < m$ and $0 \le r_2 < m$ it follows that $r_1 = r_2$ and so $a \mod m = b \mod m$. If $a \mod m = b \mod m$ then a and b have the same remainder so $a = q_1m + r$ and $b = q_2m + r$; therefore $a - b = (q_1 - q_2)m$, and so m|(a - b).

Congruence is an equivalence relation

Theorem

 $a \equiv b \pmod{m}$ iff $a \mod m = b \mod m$

Proof.

Assume $a \equiv b \pmod{m}$; so m|(a-b). If $a = q_1m + r_1$ and $b = q_2m + r_2$ where $0 \le r_1 < m$ and $0 \le r_2 < m$ it follows that $r_1 = r_2$ and so $a \mod m = b \mod m$. If $a \mod m = b \mod m$ then a and b have the same remainder so $a = q_1m + r$ and $b = q_2m + r$; therefore $a - b = (q_1 - q_2)m$, and so m|(a - b).

 $\bullet \equiv \pmod{m}$ is an equivalence relation on integers

A simple theorem of congruence

Theorem

 $a \equiv b \pmod{m}$ iff there is an integer k such that a = b + km

A simple theorem of congruence

Theorem

 $a \equiv b \pmod{m}$ iff there is an integer k such that a = b + km

Proof.

If $a \equiv b \pmod{m}$, then by the definition of congruence $m \mid (a - b)$. Hence, there is an integer k such that a - b = km and equivalently a = b + km. If there is an integer k such that a = b + km, then km = a - b. Hence, $m \mid (a - b)$ and $a \equiv b \pmod{m}$.

Congruences of sums, differences, and products

Theorem

If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$

Congruences of sums, differences, and products

Theorem

If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$

Proof.

Since $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, by the previous theorem, there are integers s and t with b = a + sm and d = c + tm. Therefore, b + d = (a + sm) + (c + tm) = (a + c) + m(s + t), and bd = (a + sm)(c + tm) = ac + m(at + cs + stm). Hence, $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$

Congruences of sums, differences, and products

Theorem

If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$

Proof.

Since $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, by the previous theorem, there are integers s and t with b = a + sm and d = c + tm. Therefore, b + d = (a + sm) + (c + tm) = (a + c) + m(s + t), and bd = (a + sm)(c + tm) = ac + m(at + cs + stm). Hence, $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$

Corollary

- $\bullet (a+b) \bmod m = ((a \bmod m) + (b \bmod m)) \bmod m$
- $ab \mod m = ((a \mod m)(b \mod m)) \mod m$

•
$$\mathbb{Z}_m = \{0, 1, \ldots, m-1\}$$

- $\mathbb{Z}_m = \{0, 1, \ldots, m-1\}$
- $+_m$ on \mathbb{Z}_m is $a +_m b = (a + b) \mod m$

- $\mathbb{Z}_m = \{0, 1, \ldots, m-1\}$
- $+_m$ on \mathbb{Z}_m is $a +_m b = (a + b) \mod m$
- \cdot_m on \mathbb{Z}_m is define $a \cdot_m b = (a \cdot b) \mod m$

- $\mathbb{Z}_m = \{0, 1, \dots, m-1\}$
- $+_m$ on \mathbb{Z}_m is $a +_m b = (a + b) \mod m$
- \cdot_m on \mathbb{Z}_m is define $a \cdot_m b = (a \cdot b) \mod m$
- Find $7 +_{11} 9$ and $-7 \cdot_{11} 9$

- $\mathbb{Z}_m = \{0, 1, \ldots, m-1\}$
- $+_m$ on \mathbb{Z}_m is $a +_m b = (a + b) \mod m$
- \cdot_m on \mathbb{Z}_m is define $a \cdot_m b = (a \cdot b) \mod m$
- Find $7 +_{11} 9$ and $-7 \cdot_{11} 9$
- \bullet 7 +₁₁ 9 = (7 + 9) mod 11 = 16 mod 11 = 5

- $\mathbb{Z}_m = \{0, 1, \ldots, m-1\}$
- $+_m$ on \mathbb{Z}_m is $a +_m b = (a + b) \mod m$
- \cdot_m on \mathbb{Z}_m is define $a \cdot_m b = (a \cdot b) \mod m$
- Find $7 +_{11} 9$ and $-7 \cdot_{11} 9$
- \bullet 7 +₁₁ 9 = (7 + 9) mod 11 = 16 mod 11 = 5
- \bullet -7·₁₁ 9 = (-7·9) mod 11 = -63 mod 11 = 3

Primes

Definition

A positive integer p > 1 is called prime iff the only positive factors of p are 1 and p. Otherwise it is called composite

Primes

Definition

A positive integer p > 1 is called prime iff the only positive factors of p are 1 and p. Otherwise it is called composite

Theorem (Fundamental Theorem of Arithmetic)

Every positive integer greater than 1 can be written uniquely as a prime or as the product of its prime factors, written in order of nondecreasing size

Primes

Definition

A positive integer p > 1 is called prime iff the only positive factors of p are 1 and p. Otherwise it is called composite

Theorem (Fundamental Theorem of Arithmetic)

Every positive integer greater than 1 can be written uniquely as a prime or as the product of its prime factors, written in order of nondecreasing size

$$765 = 3 \cdot 3 \cdot 5 \cdot 17 = 3^2 \cdot 5 \cdot 17$$

Theorem (Fundamental Theorem of Arithmetic)

Every positive integer greater than 1 can be written uniquely as a prime or as the product of its prime factors, written in order of nondecreasing size

Theorem (Fundamental Theorem of Arithmetic)

Every positive integer greater than 1 can be written uniquely as a prime or as the product of its prime factors, written in order of nondecreasing size

Showed by induction if n > 1 is an integer then n can be written as a product of primes

Theorem (Fundamental Theorem of Arithmetic)

Every positive integer greater than 1 can be written uniquely as a prime or as the product of its prime factors, written in order of nondecreasing size

Showed by induction if n > 1 is an integer then n can be written as a product of primes

Missing is uniqueness

Theorem (Fundamental Theorem of Arithmetic)

Every positive integer greater than 1 can be written uniquely as a prime or as the product of its prime factors, written in order of nondecreasing size

Showed by induction if n > 1 is an integer then n can be written as a product of primes

Missing is uniqueness

Lemma if p is prime and $p|a_1a_2...a_n$ where each a_i is an integer, then $p|a_j$ for some $1 \le j \le n$

Theorem (Fundamental Theorem of Arithmetic)

Every positive integer greater than 1 can be written uniquely as a prime or as the product of its prime factors, written in order of nondecreasing size

Showed by induction if n > 1 is an integer then n can be written as a product of primes

Missing is uniqueness

Lemma if p is prime and $p|a_1 a_2 \dots a_n$ where each a_i is an integer, then $p|a_j$ for some $1 \le j \le n$

By induction too

Theorem (Fundamental Theorem of Arithmetic)

Every positive integer greater than 1 can be written uniquely as a prime or as the product of its prime factors, written in order of nondecreasing size

Showed by induction if n > 1 is an integer then n can be written as a product of primes

Missing is uniqueness

Lemma if p is prime and $p|a_1a_2...a_n$ where each a_i is an integer, then $p|a_j$ for some $1 \le j \le n$

By induction too

Now result follows

Lemma Every natural number greater than one is either prime or it has a prime divisor

Lemma Every natural number greater than one is either prime or it has a prime divisor

Follows from fundamental theorem

Lemma Every natural number greater than one is either prime or it has a prime divisor

Follows from fundamental theorem

Proof Suppose towards a contradiction that there are only finitely many primes $p_1, p_2, p_3, \ldots, p_k$. Consider the number $q = p_1p_2p_3 \ldots p_k + 1$, the product of all the primes plus one. By hypothesis q cannot be prime because it is strictly larger than all the primes. Thus, by the lemma, it has a prime divisor, p. Because $p_1, p_2, p_3, \ldots, p_k$ are all the primes, p must be equal to one of them, so p is a divisor of their product. So we have that p divides $p_1p_2p_3 \ldots p_k$, and p divides q, but that means p divides their difference, which is 1. Therefore $p \leq 1$. Contradiction. Therefore there are infinitely many primes.

How to find all primes between 2 and *n*?

How to find all primes between 2 and *n*?

A very inefficient method of determining if a number *n* is prime

Try every integer $i \le \sqrt{n}$ and see if n is divisible by i

• Write the numbers 2, ..., n into a list. Let i := 2

How to find all primes between 2 and *n*?

A very inefficient method of determining if a number *n* is prime

Try every integer $i \le \sqrt{n}$ and see if n is divisible by i

- Write the numbers $2, \ldots, n$ into a list. Let i := 2
- Remove all strict multiples of i from the list

How to find all primes between 2 and *n*?

A very inefficient method of determining if a number *n* is prime

Try every integer $i \le \sqrt{n}$ and see if n is divisible by i

- Write the numbers $2, \ldots, n$ into a list. Let i := 2
- Remove all strict multiples of i from the list
- **1** Let k be the smallest number present in the list s.t. k > i and let i := k

How to find all primes between 2 and *n*?

A very inefficient method of determining if a number *n* is prime

Try every integer $i \le \sqrt{n}$ and see if n is divisible by i

- Write the numbers $2, \ldots, n$ into a list. Let i := 2
- Remove all strict multiples of i from the list
- 3 Let k be the smallest number present in the list s.t. k > i and let i := k
- 4 If $i > \sqrt{n}$ then stop else go to step 2

How to find all primes between 2 and *n*?

A very inefficient method of determining if a number *n* is prime

Try every integer $i \le \sqrt{n}$ and see if n is divisible by i

- Write the numbers 2, ..., n into a list. Let i := 2
- Remove all strict multiples of i from the list
- **3** Let k be the smallest number present in the list s.t. k > i and let i := k
- 4 If $i > \sqrt{n}$ then stop else go to step 2

Testing if a number is prime can be done efficiently in polynomial time [Agrawal-Kayal-Saxena 2002], i.e., polynomial in the number of bits used to describe the input number. Efficient randomized tests had been available previously.