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Overview

Graphs and Graph Models
Graph Terminology and Special Types of Graphs
Representations of Graphs, and Graph
Isomorphism
Connectivity
Euler and Hamiltonian Paths
Brief look at other topics like graph coloring
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What is a Graph?

Informally, a graph consists of a non-empty set of vertices (or nodes),
and a set E of edges that connect (pairs of) nodes.

But different types of graphs (undirected, directed, simple, multigraph,
. . .) have different formal definitions, depending on what kinds of edges
are allowed.

This creates a lot of (often inconsistent) terminology.

Before formalizing, let’s see some examples....

During this course, we focus almost exclusively on standard
(undirected) graphs and directed graphs,
which are our first two examples.
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A (simple undirected) graph:

LA

SF

NY

ED

Only undirected edges; at most one edge between any pair of distinct
nodes; and no loops (edges between a node and itself).
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A directed graph (digraph) (with loops):

LA

SF

NY

ED

Only directed edges; at most one directed edge from any node to any
node; and loops are allowed.
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A simple directed graph:

LA

SF

NY

ED

Only directed edges; at most one directed edge from any node to any
other node; and no loops allowed.
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An undirected multigraph:

LA

SF

NY

ED

Only undirected edges; may contain multiple edges between a pair of
nodes; but no loops.
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An undirected pseudograph:

LA

SF

NY

ED

Only undirected edges; may contain multiple edges between a pair of
nodes; and may contain loops (even multiple loops on the same node).
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A directed multigraph:

LA

SF

NY

ED

Only directed edges; may contain multiple edges from one node to
another; but no loops allowed.
Warning: this differs slightly from the Rosen book terminology. The
book’s notion of “directed multigraph” would allow loops.
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An directed pseudograph:

LA

SF

NY

ED

Only directed edges; may contain multiple edges from one node to
another; and may contain loops (even multiple loops on one node).
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Graph Terminology Zoo (ridiculous)

Type Edges Multi-Edges? Loops?
1. (simple undirected) graph Undirected No No
2. (undirected) multigraph Undirected Yes No
3. (undirected) pseudograph Undirected Yes Yes
4. directed graph Directed No Yes
5. simple directed graph Directed No No
6. directed multigraph Directed Yes No1

7. directed pseudograph Directed Yes Yes
8. mixed graph Both Yes Yes

We will focus on the two most standard types:
(1.) graphs (simple undirected), and
(4.) directed graphs (also known as digraphs).

1differs from book.
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Formal Defintion of Directed Graphs

A directed graph (digraph), G = (V , E), consists of a non-empty set,
V , of vertices (or nodes), and a set E ⊆ V × V of directed edges (or
arcs). Each directed edge (u, v) ∈ E has a start (tail) vertex u, and a
end (head) vertex v .
Note: a directed graph G = (V , E) is simply a set V together with a
binary relation E on V .
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Definition of (Undirected) Graphs

For a set V , let [V ]k denote the set of k -element subsets of V .
(Equivalently, [V ]k is the set of all k -combinations of V .)

A (simple,undirected) graph, G = (V , E), consists of a non-empty set
V of vertices (or nodes), and a set E ⊆ [V ]2 of (undirected) edges.
Every edge {u, v} ∈ E has two distinct vertices u 6= v as endpoints,
and such vertices u and v are then said to be adjacent in the graph G.

Note: the above definitions allow for infinite graphs, where |V | =∞.
In this course we will focus on finite graphs.

Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 6) 13 / 13



Graph Models: Computer Networks

• network where we care 
about the number of links: 
we use a multigraph. 

• diagnostic self-links at data 
centers: we use a 
pseudograph. 

• network with multiple one-way 
links, we use a directed 
(multi)graph.  



Applications of Graphs
“EVERYTHING IS A GRAPH”  

 (labeled, directed, etc., ...) 
 graph theory can be used in modelling of:

Social networks
Communications networks
Information networks
Software design
Transportation networks
Biological networks
......



Graph Models: Social Networks
   model social structures:  relationships between people or 

groups. 

  vertices represent individuals or organizations, edges 
represent relationships between them.

    Useful graph models of social networks include:

●   friendship graphs - undirected graphs where two 
people are connected if they are friends (e.g., on 
Facebook)

●   collaboration graphs - undirected graphs where two 
people are connected if they collaborate in a specific 
way

●   influence graphs - directed graphs where there is an 
edge from one person to another if the first person can 
influence the second

  



Graph Models: Social Networks 

  

Example: A friendship 
graph: two people are 
connected if they are 
Facebook friends.

Example: An 
influence graph



Information Networks 

In a web graph, web pages are represented 
by vertices and links are represented by 
directed edges.

In a citation network: 
 Research papers are represented by vertices.
When paper A cites paper B,  there is an edge 

from the vertex representing  paper A to the 
vertex representing paper B.



Transportation Graphs

Graph models are extensively used to study   
transportation networks.

Airline networks can be modeled using 
directed multigraphs, where:
airports are represented by vertices
each flight is represented by  a directed edge 

from the vertex representing the departure 
airport to the vertex representing the 
destination airport

Road networks modeled using graphs



Biological Applications

Graph models are used extensively in many 
areas of the biological science.

Niche overlap graphs model competition 
between species in an ecosystem:

 

Example: niche 
overlap graph for a 
forest ecosystem.



Degree and neighborhood of a vertex

Definition 3. The degree of a vertex v  in a 
undirected graph is the number of edges 
incident with it. The degree of the vertex v is 
denoted by deg(v).

Definition 3. The neighborhood (neighbor set) 
of a vertex v in a  undirected graph, denoted 
N(v) is the set of vertices adjacent to v.



Degrees and Neighborhoods of Vertices

Example:  What are the  degrees  and 
neighborhoods of the vertices in the graphs G 
and H?

Solution: deg(a) = 2, deg(b) = 4, deg(d ) = 1,   
N(a) = {b, f }, N(b) = {a, c, e, f },  N(d) = {c}. 
 
          



Handshaking Theorem

THEOREM 1 (Handshaking Lemma): If 
G=(V,E) is a undirected graph with m edges, 
then:

 
           

2m=∑v∈V
deg(v)

Proof:
Each edge contributes twice to the degree count of all 
vertices. Hence, both the left-hand and right-hand sides 
of this equation equal twice the number of edges.  QED 



Degree of Vertices (continued)

Theorem 2: An undirected graph has an even 
number of vertices of odd degree.
Proof: Let V1 be the vertices of even degree 
and V2 be the vertices of odd degree in graph  
G = (V, E) with m edges. Then 
       

      
   

must be 
even since 
deg(v) is 
even for 
each v ∈ 
V1

even

must be even because 2m is 
even and the sum of degrees 
of vertices of even degree is 
even. Thus, since this is the 
sum of degrees of all vertices 
of odd degree, there must be 
an even number of them.



Handshaking Theorem:Examples
Example: How many edges are there in a 
graph with 10 vertices, each having degree six?
Solution: the sum of the degrees of the 
vertices is  6 ⋅ 10 = 60.  The handshaking 
theorem says 2m = 60.   
So the number of edges is m = 30.

Example: If a graph has 5 vertices, can each 
vertex have degree 3?
Solution: This is not possible by the 
handshaking thorem, because the sum of the 
degrees of the vertices 3 ⋅  5 = 15 is odd.



Directed Graphs
Definition:  The in-degree of a vertex v, 
denoted deg−(v), is the number of edges 
directed into v. The out-degree of v, denoted 
deg+(v), is the number of edges directed out of 
v. Note that a loop at a vertex contributes 1 to 
both in-degree and out-degree.
Example:  In the graph G we have

deg−(a) = 2, deg−(b) = 2, 
deg−(c) = 3, deg−(d) = 2, 
 deg−(e) = 3, deg−(f) = 0.



Directed Graphs (continued)

Theorem 3: Let G = (V, E) be a directed graph. 
Then:

Proof: The first sum counts the number of 
outgoing edges over all vertices and the second 
sum counts the number of incoming edges over 
all vertices.  Both sums must be |E|.



Special Types of Graphs: Complete 
Graphs

A complete graph on n vertices, denoted by      , 
is the simple graph that contains exactly one 
edge between each pair of distinct vertices. 

K n



Special Types of Graphs: Cycles

A cycle       for n ≥  3 consists of n vertices v1, 
v2 ,⋯ , vn, and edges {v1, v2}, {v2, v3} ,⋯ , 
{vn-1, vn}, {vn, v1}.

CnCnCn



Special Types of Simple 
Graphs:       n-Cubes
An n-dimensional hypercube, or n-cube, is a 
graph with       vertices representing all bit 
strings of length n, where there is an edge 
between two vertices if and only if they differ in 
exactly one bit position.

 

2n



Bipartite Graphs
Definition:
An equivalent definition of a bipartite graph is 
one where it is possible to color the vertices 
either red or blue so that no two adjacent 
vertices are the same color.

 

  

G is  
bipartite

H is  not 
bipartite: if we 
color a red, 
then its 
neighbors f and 
b must be blue.
But f and b are 
adjacent.



Bipartite Graphs (continued)
Example:  Show that        is bipartite.
Solution: Partition the vertex set into     V1 = 
{v1, v3, v5} and V2 = {v2, v4, v6}:

Example:  Show that   C_3    is not bipartite.
Solution:  If we partition vertices of C_3 into 
two nonempty sets, one set must contain two 
vertices. But every vertex is connected to every 
other. So, the two vertices in the same partition 
are connected. Hence, C_3 is not bipartite.

C6



Complete Bipartite Graphs

Definition:  A complete bipartite graph            
is a graph that has its vertex set partitioned 
into two subsets  V_1 of size m and V_2 of size n 
such that there is an edge from every vertex in 
V_1 to every vertex in V_2.

Examples:

Km,n



Subgraphs 

Definition: A subgraph of a graph  G = 
(V,E)  is a graph (W,F),  where  
and        . A subgraph H of G is a proper 
subgraph of G if H ≠ G.
Example: here is       and one of its (proper) 
subgraphs:

      

W⊆V
F⊆EF⊆E

K5



Induced Subgraphs 
Definition:  Let G = (V, E) be a graph.  The  
subgraph induced  by a subset W  of the vertex 
set V is the graph   H= (W,F),  whose edge 
set  F  contains an edge in E if and only if both 
endpoints are in W. 
Example: Here is K_5  and its induced
subgraph induced by W = {a,b,c,e}.

      



Bipartite Graphs and Matchings
Bipartite graphs used extensively in app’s 
involving matching elements of two sets:
Job assignments - vertices represent the jobs 
and the employees, edges link employees with 
jobs they are qualified for. Maximize # of 
employees matched to jobs.

Marriage/dating - vertices represent  men & 
women and edges link a man & woman if they 
are acceptable to each other as partners.



Bipartite graphs

A bipartite graph is a (undirected) graph G = (V , E) whose
vertices can be partitioned into two disjoint sets (V1, V2), with
V1 ∩ V2 = ∅ and V1 ∪ V2 = V , such that for every edge e ∈ E ,
e = {u, v} such that u ∈ V1 and v ∈ V2. In other words, every
edge connects a vertex in V1 with a vertex in V2.

Equivalently, a graph is bipartite if and only if it is possible to
color each vertex red or blue such that no two adjacent vertices
are the same color.
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Example of a Bipartite Graph

V1 V2
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Matchings in Bipartite Graphs

A matching, M, in a graph, G = (V , E), is a subset of edges,
M ⊆ E , such that there does not exist two distinct edges in M
that are incident on the same vertex. In other words, if
{u, v}, {w , z} ∈ M, then either {u, v} = {w , z} or
{u, v} ∩ {w , z} = ∅.
A maximum matching in graph G is a matching in G with the
maximum possible number of edges.
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Perfect/complete matchings

For a graph G = (V , E), we say that a subset of edges, W ⊆ E ,
covers a subset of vertices, A ⊆ V , if for all vertices u ∈ A,
there exists an edge e ∈W , such that e is incident on u, i.e.,
such that e = {u, v}, for some vertex v .

In a bipartite graph G = (V , E) with bipartition (V1, V2), a
complete matching with respect to V1, is a matching M ′ ⊆ E
that covers V1, and a perfect matching is a matching, M∗ ⊆ E ,
that covers V .

Question: When does a bipartite graph have a perfect
matching?
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Hall’s Marriage Theorem
For a bipartite graph G = (V , E), with bipartition (V1, V2), there
exists a matching M ⊆ E that covers V1 if and only if for all
S ⊆ V1, |S| ≤ |N(S)|.
Proof: For G = (V , E), with A ⊆ V , let NG(A) denote the
neighbors of A in G.
First, “only if” direction: Suppose there is a matching M in G that
covers V1. We show that ∀S ⊆ V1, |S| ≤ |NG(S)|. Suppose, for
contradiction, that there is a subset S ⊆ V1 such that
|S| > |NG(S)|. Then no matching M could possibly covers S,
because there aren’t enough neighbors NG(S). Done.
The “if” direction of the proof is harder...
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proof of Hall’s Theorem, continued...

“If” direction: Suppose ∀S ⊆ V1, |S| ≤ |NG(S)|. Then we prove a
matching M exists which covers V1, by induction on the size
|V1|.

Base case: |V1| = 1. Since |V1| ≤ |NG(V1)|, there must be an
edge covering the vertex u in V1 = {u}.

Inductive step: Suppose (by inductive hypothesis) that the
claim holds for bipartite graphs G′ with |V ′1| = j ≤ k . Suppose
|V1| = k + 1.
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proof of Hall’s Theorem (continued)

Case 1: Suppose that for every nonempty strict subset S ⊂ V1,
we have |S| ≤ |NG(S)| − 1. Take any {u, v} ∈ E , with u ∈ V1.
Remove u and v (and the edges incident on them) from G. Call
the resulting bipartite graph G′, with bipartition
(V1 − {u}, V2 − {v}).
By the induction hypothesis, there must exist a matching M ′ in
G′ that covers V1 − {u}, because for every subset S ⊆ V1 − {u},
NG(S) ⊆ NG′(S) ∪ {v}, and thus |NG′(S)| ≥ |NG(S)| − 1 ≥ |S|.
But then M = M ′ ∪ {{u, v}} is a matching in G which covers V1.
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Case 2: Suppose, on the contrary, that there exists a nonempty
strict subset S ⊂ V1 with |S| = |NG(S)|.
Any matching that covers V1 must match S to NG(S).
By the induction hypothesis, there is a matching M ′ covering S
on the bipartite subgraph G′ of G induced by S ∪ NG(S). And
furthermore, the bipartite subgraph G′′ of G induced by
(V1 − S) ∪ (V2 − NG(S)) also satisfies the condition, and
contains a matching M ′′ that covers (V1 − S). This is because if
A ⊆ V1 − S has |A| > |NG′′(A)|, this implies
|A ∪ S| > |NG(A ∪ S)|, which violates the assumption about G.
Letting M = M ′ ∪M ′′, M defines a matching in G that covers
V1.
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More on Matchings

Corollary A bipartite graph G = (V , E) with bipartition (V1, V2)
has a perfect matching if and only if |V1| = |V2| and ∀S ⊆ V1,
|S| ≤ |NG(S)|.

Unfortunately, the proof we have given is not constructive
enough: it doesn’t yield an (efficient) algorithm to compute a
maximum matching in a bipartite graph.
An alternative proof of Hall’s theorem (which we do not give)
based on alternating paths and augmenting paths, is
constructive & yields an efficient (polynomial time) algorithm for
computing a maximum matching.
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New Graphs from Old
Definition: The union of two simple graphs        
             G1 = (V1, E1) and G2 = (V2, E2) is the 
simple graph with vertex set V1 ⋃ V2 and edge 
set E1 ⋃ E2. The union of G1 and G2 is denoted 
by G1 ⋃ G2.

Example:



Representing Graphs: Adjacency Lists

Definition: An adjacency list  represents a 
graph (with no multiple edges) by specifying 
the vertices that are adjacent to each vertex.

Example:

Example:



Representation of Graphs: 
Adjacency Matrices
Definition: Suppose that G = (V, E) is a simple 
graph where |V| = n. Arbitrarily list the vertices 
of G as  v_1, v_2, … , v_n.  
The adjacency matrix, A, of G, with respect to 
this listing of vertices, is the n × n 0-1 matrix 
with its (i, j)th entry = 1 when v_i and v_j are 
adjacent, and  =0 when they are not adjacent.

In other words:                      and:A=[aij]



Adjacency Matrices (continued)

Example:  The vertex ordering is 
is a, b, c, d.

Note: The adjacency matrix of an undirected graph is symmetric: 

Also,   since there are no loops, each diagonal  entry is zero: 

A sparse graph has few 
edges relative to the 
number of possible 
edges. Sparse graphs 
are more efficient to  
represent using an 
adjacency list than an 
adjacency matrix.  But 
for a dense graph, an 
adjacency matrix is 
often preferable.

aij=a ji ,∀ i , j

aii=0 ,∀i



Adjacency Matrices (continued)
Adjacency matrices can also be used to 

represent graphs with loops and multi-edges. 
When multiple edges connect vertices vi and 

vj, (or if multiple loops present at the same 
vertex), the (i, j)th entry equals the number of 
edges connecting the pair of vertices. 

Example: Adjacency matrix  of a pseudograph, 
using vertex ordering  a, b, c, d:
  

  
  
  



Adjacency Matrices (continued)
Adjacency matrices can represent directed 

graphs in exactly the same way. The matrix A 
for a directed graph  G = (V, E) has a 1 in its 
(i, j)th position if there is an edge from vi to 
vj, where v1, v2, … vn is a  list of the vertices.
 In other words,                                                         

                                                                                      
                                                                                      
                                                     

Note: the adjacency matrix for a directed 
graph need not be symmetric.  

aij=1 if (i , j)∈E
aij=0 if (i , j)∉E



Isomorphism of Graphs
Definition: Two (undirected) graphs 
G1 = (V1, E1) and    G2 = (V2, E2) are 
isomorphic if there is a bijection,                  ,   
with the property that for all vertices 
                      
                        if and only if    

Such a function f is called an isomorphism.
Intuitively, isomorphic graphs are “THE SAME”, 
except for “renamed” vertices.

{f (a) , f (b)}∈E2

a ,b∈V 1

f :V 1→V 2

{a ,b}∈E1



Isomorphism of Graphs (cont.)
Example: Show that the graphs G =(V, E) and   
H = (W, F) are isomorphic.

Solution: The function f with f(u1) = v1,
f(u2) = v4, f(u3) = v3, and f(u4) = v2  is a 
one-to-one correspondence between V and W.    
           



Isomorphism of Graphs (cont.)
It is difficult to determine whether two graphs 
are isomorphic by brute force: there are n! 
bijections between vertices of two n-vertex 
graphs. 
 
Often, we can show two graphs are not
isomorphic by finding a property that only one 
of the two graphs has. Such a property is called 
graph invariant:
● e.g., number of vertices of given degree, the 

degree sequence (list of the degrees), .....



Isomorphism of Graphs (cont.)

Example: Are these graphs  are isomorphic?

Solution:   No! Since deg(a) = 2 in G, a must 
correspond to t, u, x, or y, since these are the 
vertices of degree 2 in H. But each of these 
vertices is adjacent to another vertex of degree 
2 in H, which is not true for a in G.  So, G and
H can not be isomorphic.

 

 



Isomorphism of Graphs (cont.)

Example: Determine whether these 
two graphs are isomorphic.

Solution: The function f is defined 
by: f(u1) = v6, f(u2) = v3, f(u3) = 
v4, f(u4) = v5 , f(u5) = v1, and  
f(u6) = v2 is a bijection.   



Algorithms for Graph Isomorphism
There is no known polynomial time algorithm for
graph isomorphism.

In fact, it was a decades-old open problem to
obtain an algorithm for deciding whether two
graphs with n vertices are isomorphic with
worst-case running time better than 2O(

√
n)

(exponential in
√

n).

BREAKTHROUGH: [Babai, 2016]: “Graph
Isomorphism in Quasipolynomial time”.
(Quasipolynomial time means time 2O((log(n))k ) for
some fixed constant k > 1. This is much better
than 2O(

√
n) time, but worse than polynomial time.)



Babai’s proof is over 80 pages long (and uses
sophisticated finite group theory).

In practice, there are actually very good
algorithms for checking isomorphism, which run
very efficiently for nearly all graph instances that
arise in practice.

See, e.g., the publicly available software called
NAUTY ([B. McKay, 1984. . .2016]) for graph
isomorphism.



Applications of Graph Isomorphism 

The question whether graphs are isomorphic 
plays an important role in applications of graph 
theory. For example:

 
Chemists use molecular graphs to model chemical 
compounds. Vertices represent atoms and edges 
represent chemical bonds. When a new 
compound is synthesized, a database of 
molecular graphs is checked to determine 
whether the new compound is isomorphic to the 
graph of an already known one. 



Section Summary

Paths

Connectedness in Undirected Graphs

(strong) Connectedness in Directed Graphs
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Paths (in undirected graphs)
Informally, a path is a sequence of edges connecting vertices.
Formally:

Definition: For an undirected graph G = (V , E), an integer
n ≥ 0, and vertices u, v ∈ V , a path (or walk) of length n from u
to v in G is a sequence:

x0, e1, x1, e2, . . . , xn−1, en, xn

of interleaved vertices xj ∈ V and edges ei ∈ E ,
such that x0 = u and xn = v , and such that ei = {xi−1, xi} ∈ E for
all i ∈ {1, . . . , n}.
Such a path starts at u and ends at v . A path of length n ≥ 1 is
called a circuit (or cycle) if n ≥ 1 and the path starts and ends at
the same vertex, i.e., u = v .
A path or circuit is called simple if it does not contain the same
edge more than once.
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More on paths
When G = (V , E) is a simple undirected graph a path
x0, e1, . . . , en, xn is determined uniquely by the sequence of
vertices x0, x1, . . . , xn. So, for simple undirected graphs we can
denote a path by its sequence of vertices x0, x1, . . . , xn.

Note 1: The word “simple” is overloaded. Don’t confuse a
simple undirected graph with a simple path. There can be a
simple path in a non-simple graph, and a non-simple path in a
simple graph.
Note 2: The terms “path” and “simple path” used in Rosen’s
book are not entirely standard. Other books use the terms
“walk” and “trail” to denote “path” and “simple path”, respectively.
Furthermore, others use “path” itself to mean a walk that doesn’t
re-visit any vertex, except possibly the first and last in case it is
a circuit. To stick to Rosen’s terminology, we shall use the
non-standard term tidy path to refer to such a walk.
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Example
Here is a simple undirected graph:

a b c

d g f

d , a, b, c, f is a simple (and tidy) path of length 4.
d , g, c, b, a, d is a simple (and tidy) circuit of length 5.
a, b, g, f is not a path, because {b, g} is not an edge.
d , a, b, c, f , b, a, g is a path, but it is not a simple path,
because the edge {a, b} occurs twice in it.
c, g, a, d , g, f is a simple path, but it is not a tidy path,
because vertex g occurs twice in it.
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Example: an acquantance graph

Alice

Bob

Kathy

David

Ellen

Fred
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Paths in directed graphs (same definitions)
Definition: For an directed graph G = (V , E), an integer n ≥ 0,
and vertices u, v ∈ V , a path (or walk) of length n from u to v in
G is a sequence of vertices and edges x0, e1, x1, e2, . . . , xn, en,
such that x0 = u and xn = v , and such that ei = (xi−1, xi) ∈ E for
all i ∈ {1, . . . , n}.
When there are no multi-edges in the directed graph G, the path
can be denoted (uniquely) by its vertex sequence x0, x1, . . . , xn.

A path of length n ≥ 1 is called a circuit (or cycle) if the path
starts and ends at the same vertex, i.e., u = v .

A path or circuit is called simple if it does not contain the same
edge more than once. (And we call it tidy if it does not contain
the same vertex more than once, except possibly the first and
last in case u = v and the path is a circuit (cycle).)
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Connectness in undirected graphs
Definition: An undirected graph G = (V , E) is called connected,
if there is a path between every pair of distinct vertices.
It is called disconnnected otherwise.

a
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d e

f

This graph is connected

a

b

c

d e

f

This graph is not connected
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Proposition
There is always a simple, and tidy, path between any pair of
vertices u, v of a connected undirected graph G.

Proof: By definition of connectedness, for every pair of vertices
u, v , there must exist a shortest path x0, e1, x1, . . . , en, xn in G
such that x0 = u and xn = v .
Suppose this path is not tidy, and n ≥ 1. (If n = 0, the
Proposition is trivial.) Then xj = xk for some 0 ≤ j < k ≤ n. But
then x0, e1, x1, . . . , xj , ek+1, xk+1, . . . , en, xn is a shorter path from
u to v , contradicting the assumption that the original path was
shortest.
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connected components of undirected graphs

Definition: A connected component H = (V ′, E ′) of a graph
G = (V , E) is a maximal connected subgraph of G, meaning H
is connected and V ′ ⊆ V and E ′ ⊆ E , but H is not a proper
subgraph of a larger connected subgraph R of G.

a

b

c

d e

f

g h

This graph, G = (V , E), has 3 connected components.
(It is thus a disconnected graph.)
One connected component of G is H1 = (V ′1, E ′1),
where V ′1 = {d , a, b} and E ′1 = {{d , a}, {d , b}}.
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Connectedness in directed graphs

Definition: A directed graph G = (V , E) is called strongly
connected, if for every pair of vertices u and v in V , there is a
(directed) path from u to v , and a directed path from v to u.

(G = (V , E) is weakly connected if there is a path between
every pair of vertices in V in the underlying undirected graph
(meaning when we ignore the direction of edges in E .)

A strongly connected component (SCC) of a directed graph G,
is a maximal strongly connected subgraph H of G which is not
contained in a larger strongly connected subgraph of G.
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Example

a

b

c

d e

f

This digraph, G, is not strongly connected, because, for
example, there is no directed path from b to c.
Question: what are the strongly connected components (SCCs)
of G?

One strongly connected component (SCC) of G is H1 = (V ′1, E ′1),
where V ′1 = {d , a, b} and E ′1 = {(d , a), (a, b), (b, d)}.
Another SCC of G is H2 = (V ′2, E ′2), where V ′2 = {e, c, f} and
E ′2 = {(e, c), (c, f ), (f , e)}.
There are no other SCCs in G.
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Directed Acyclic Graphs
A Directed Acyclic Graph (DAG), is a directed graph that
contains no circuits or loops.

Example:

a

b

c

d

e

f

a

b

c

d

e

f

This is a DAG This is NOT a DAG
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Euler Paths and Euler Circuits

Hamiltonian Paths and Hamiltonian Circuits
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The Königsberg Bridge Problem
Leonard Euler (1707-1783) was asked to solve the following:

Question: Can you start a walk somewhere in Königsberg, walk
across each of the 7 bridges exactly once, and end up back
where you started from?

Euler (in 1736) used “graph theory” to answer this question.

A

B

C

D
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Euler paths and Euler Circuits

Recall that an (undirected) multigraph does not have any loops,
but can have multiple edges between the same pair of vertices.

Definition: An Euler path in a multigraph G is a simple path that
contains every edge of G.
(So, every edge occurs exactly once in the path.)

An Euler circuit in an multigraph G is a simple circuit that
contains every edge of G.
(So, every edge occurs exactly once in the circuit.)

Question: Is there a simple criterion for determining whether a
multigraph G has an Euler path (an Euler circuit)?

Answer: Yes.
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Euler’s Theorem

Euler’s Theorem (1736)
A connected undirected multigraph with at least two vertices has
an Euler circuit if and only if each of its vertices has even
degree.

Proof: “Only if” direction: Suppose a multigraph G = (V , E) has
an Euler circuit, x0e1x1e2 . . . emxm, where x0 = xm = u.
For every vertex v ∈ V , v 6= u, each time we enter v via an edge
ei , we must leave v via a different edge ei+1. So, in total, since
we see all edges incident to v exactly once, all such vertices v
must have even degree.
Likewise, the initial (and final) vertex u = x0 = xm, must also
have even degree, because the edges e1 and em pair up in the
same way.
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Proof of Euler’s Theorem (continued)
The (harder) “if” direction: Suppose G = (V , E) is connected
and every vertex in V has even degree.
We give a constructive proof that, given such a multigraph G,
shows how to construct an Euler circuit (efficiently).
Start a “walk” at any vertex v , never re-using an edge, walking
for as long as possible until you can not do so any more.
Claim: Such a “walk” (simple path), w1, must end at the vertex v
where it started (i.e., it must be a circuit).
Reason: For any vertex z other than v , whenever the walk
enters z via an edge, there must be an odd number of edges
incident to z “remaining”. Note: zero is not an odd number! After
leaving z, there must be an even number of edges of z
“remaining”.
If the simple circuit w1 covers every edge of G, we are done.
If not, .....
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Proof of Euler’s theorem (final part)
Note that every vertex has even degree “remaining” after the
edges of the simple circuit w1 are removed.
If the simple circuit w1 does not cover every edge of G, since G
is connected, there must be some vertex x ′ on the circuit w1

which is incident to an edge not in w1. So, w1 = w ′1xw ′′1
We start a new walk at the vertex x ′, on the “remaining” graph
without the edges of w1. This yields a new circuit w2 that must
start and end at x ′.
We can then then “splice” w2 inside w1 (at the point where x ′

occurs) in order to get a new longer Euler circuit: w ′1w2w ′′1 .
We can do this same process repeatedly until there are no
edges remaining.
Note: this also yields a reasonably efficient algorithm for
computing an Euler circuit in a connected multigraph where
every vertex has even degree.
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Euler’s theorem for paths

Euler’s Theorem for paths
A connected undirected multigraph G has an Euler path which is
not an Euler circuit if and only if G has exactly two vertices of
odd degree.

The proof is very similar to the case of Euler circuits: just start
the initial walk at one of the vertices of odd degree.

The proof is thus similarly constructive, and yields an efficient
algorithm to construct an Euler path, if one exists.
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Hamiltonian Paths

Definition: A Hamiltonian path in a (undirected) graph G is a
simple path that visits every vertex exactly once. (In other
words, it is a tidy path that visits every vertex.)

A Hamiltonian circuit in a (undirected) graph G is a simple circuit
that passes through every vertex exactly once (except for the
common start and end vertex, which is seen exactly twice).

Question: Is there a simple criterion for determining whether a
(simple undirected) graph has a Hamiltonian path, or
Hamiltonian circuit?

Answer: No. Nobody knows any efficient algorithm for
determining whether a given (arbitrary) graph G has a
Hamiltonian path/circuit. The problem is “NP-complete”.
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More on Hamiltonian paths/circuits
There are sufficient criteria that guarantee existence of a
Hamiltonian circuit. For example:

Ore’s Theorem
Every simple undirected graph, G = (V , E), with n ≥ 3 vertices,
in which deg(u) + deg(v) ≥ n for every two non-adjacent
vertices u and v in V , has a Hamiltonian circuit.

Corollary (Dirac’s Theorem)
Every simple undirected graph, G = (V , E), with n ≥ 3 vertices,
in which deg(u) ≥ n/2 for all vertices u ∈ V , has a Hamiltonian
circuit.

We will NOT prove these theorems, and we will NOT
assume that you know these theorems.
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