Discrete Mathematics \& Mathematical Reasoning
 Chapter 7 (continued):
 Examples in probability: Ramsey numbers and the probabilistic method

Kousha Etessami
U. of Edinburgh, UK

Frank Ramsey (1903-1930)

A brilliant logician/mathematician.
He studied and lectured at Cambridge University. He died tragically young, at age 26.

Despite his early death, he did hugely influential work in several fields: logic, combinatorics, and economics.

Friends and Enemies

Theorem: Suppose that in a group of 6 people every pair are either friends or enemies.
Then, there are either 3 mutual friends or 3 mutual enemies.
Proof: Let $\{A, B, C, D, E, F\}$ be the 6 people.
Consider A 's friends \& enemies. A has 5 relationships, so A must either have 3 friends or 3 enemies.
Suppose, for example, that $\{B, C, D\}$ are all friends of A. If some pair in $\{B, C, D\}$ are friends, for example $\{B, C\}$, then $\{A, B, C\}$ are 3 mutual friends. Otherwise, $\{B, C, D\}$ are 3 mutual enemies.
The same argument clearly works if A had 3 enemies instead of 3 friends.

Remarks on "Friends and Enemies": 6 is the smallest

 number possible for finding 3 friends or 3 enemiesNote that it is possible to have 5 people, where every pair of them are either friends or enemies, such that there does not exist 3 of them who are all mutual friends or all mutual enemies:

Graphs and Ramsey's Theorem

Ramsey's Theorem (a special case, for graphs)

Theorem: For any positive integer, k, there is a positive integer, n, such that in any undirected graph with n or more vertices: either there are k vertices that are all mutually adjacent, meaning they form a k-clique, or, there are k vertices that are all mutually non-adjacent, meaning they form a k-independent-set.

For each integer $k \geq 1$, let $R(k)$ be the smallest integer $n \geq 1$ such that every undirected graph with n or more vertices has either a k-clique or a k-independent-set as an induced subgraph.
The numbers $R(k)$ are called diagonal Ramsey numbers.

Proof of Ramsey's Theorem: Consider any integer $k \geq 1$, and any graph, $G_{1}=\left(V_{1}, E_{1}\right)$ with at least $2^{2 k}$ vertices.

Initialize: $S_{\text {Friends }}:=\{ \} ; S_{\text {Enemies }}:=\{ \}$;
for $i:=1$ to $2 k-1$ do
Pick any vertex $v_{i} \in V_{i}$;
if (v_{i} has at least $2^{2 k-i}$ friends in G_{i}) then $S_{\text {Friends }}:=S_{\text {Friends }} \cup\left\{v_{i}\right\} ; V_{i+1}:=\left\{\right.$ friends of $\left.v_{i}\right\} ;$
else (* in this case v_{i} has at least $2^{2 k-i}$ enemies in $G_{i}{ }^{*}$)
$S_{\text {Enemies }}:=S_{\text {Enemies }} \cup\left\{v_{i}\right\} ; V_{i+1}:=\left\{\right.$ enemies of $\left.v_{i}\right\} ;$
end if
Let $G_{i+1}=\left(V_{i+1}, E_{i+1}\right)$ be the subgraph of G_{i} induced by V_{i+1}; end for

At the end, all vertices in $S_{\text {Friends }}$ are mutual friends, and all vertices in $S_{\text {Enemies }}$ are mutual enemies. Since $\left|S_{\text {Friends }} \cup S_{\text {Enemies }}\right|=2 k-1$, either $\left|S_{\text {Friends }}\right| \geq k$ or $\left|S_{\text {Enemies }}\right| \geq k$. Done.

Remarks on the proof, and on Ramsey numbers

- The proof establishes that $R(k) \leq 2^{2 k}=4^{k}$.
(A more careful look at this proof shows that $R(k) \leq 2^{2 k-1}$.)
- Question: Can we give a better upper bound on $R(k)$?
- Question: Can we give a good lower bound on $R(k)$?

Paul Erdös (1913-1996)
Immensely prolific mathematician, eccentric nomad, father of the probabilistic method in combinatorics.

Lower bounds on Ramsey numbers, and the Probabilistic Method

Theorem (Erdös, 1947)
For all $k \geq 3$,

$$
R(k)>2^{k / 2}
$$

The proof uses the probabilistic method:
General idea of "the probabilistic method": To show the existence of a hard-to-find object with a desired property, Q, try to construct a probability distribution over a sample space Ω of objects, and show that with positive probability a randomly chosen object in Ω has the property Q.

Proof that $R(k)>2^{k / 2}$ using the probabilistic method:

Let Ω be the set of all graphs on the vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$. (We will later determine that $n \leq 2^{k / 2}$ suffices.)
There are $2^{\binom{n}{2}}$ such graphs. Let $P: \Omega \rightarrow[0,1]$, be the uniform probability distribution on such graphs.
So, every graph on V is equally likely. This implies that:

$$
\begin{equation*}
\text { For all } i \neq j \quad P\left(\left\{v_{i}, v_{j}\right\} \text { is an edge of the graph }\right)=1 / 2 . \tag{1}
\end{equation*}
$$

We could also define the distribution P by saying it satisfies (1).
There are $\binom{n}{k}$ subsets of V of size k.
Let $S_{1}, S_{2}, \ldots, S_{\binom{n}{k}}$ be an enumeration of these subsets of V.
For $i=1, \ldots,\binom{n}{k}$, let E_{i} be the event that S_{i} forms either a k-clique or a k-independent-set in the graph. Note that:

$$
P\left(E_{i}\right)=2 \cdot 2^{-\binom{k}{2}}=2^{-\binom{k}{2}+1}
$$

Proof of $R(k)>2^{k / 2}$ (continued):

Note that $E=\bigcup_{i=1}^{\binom{n}{k}} E_{i}$ is the event that there exists either a k-clique or a k-independent-set in the graph. But:

$$
P(E)=P\left(\bigcup_{i=1}^{\binom{n}{k}} E_{i}\right) \leq \sum_{i=1}^{\binom{n}{k}} P\left(E_{i}\right)=\binom{n}{k} \cdot 2^{-\binom{k}{2}+1}
$$

Question: How small must n be so that $\binom{n}{k} \cdot 2^{-\binom{k}{2}+1}<1$?
For $k \geq 2$: $\quad\binom{n}{k}=\frac{n(n-1) \ldots(n-k+1)}{k(k-1) \ldots 1}<\frac{n^{k}}{2^{k-1}}$
Thus, if $n \leq 2^{k / 2}$, then

$$
\binom{n}{k} \cdot 2^{-\binom{k}{2}+1}<\frac{\left(2^{k / 2}\right)^{k}}{2^{k-1}} \cdot 2^{-\binom{k}{2}+1}=\frac{2^{k^{2} / 2}}{2^{k-1}} \cdot 2^{-k(k-1) / 2+1}=2^{2-\frac{k}{2}}
$$

Completion of the proof that $R(k)>2^{k / 2}$:

For $k \geq 4, \quad 2^{2-(k / 2)} \leq 1$.
So, for $k \geq 4, P(E)<1$, and thus $P(\Omega-E)=1-P(E)>0$.
But note that $P(\Omega-E)$ is the probability that in a random graph of size $n \leq 2^{k / 2}$, there is no k-clique and no k-independent-set.
Thus, since $P(\Omega-E)>0$, such a graph must exist for any $n \leq 2^{k / 2}$.

Note that we earlier argued that $R(3)=6$, and clearly $6>2^{3 / 2}=2.828 \ldots$

Thus, we have established that for all $k \geq 3$,

$$
R(k)>2^{k / 2}
$$

A Remark

In the proof, we used the following trivial but often useful fact:

Union bound

Theorem: For any (finite or countable) sequence of events $E_{1}, E_{2}, E_{3}, \ldots$

$$
P\left(\bigcup_{i} E_{i}\right) \leq \sum_{i} P\left(E_{i}\right)
$$

Proof (trivial):

$$
P\left(\bigcup_{i} E_{i}\right)=\sum_{s \in \cup_{i} E_{i}} P(s) \leq \sum_{i} \sum_{s \in E_{i}} P(s)=\sum_{i} P\left(E_{i}\right) .
$$

Remarks on Ramsey numbers

- We have shown that

$$
2^{k / 2}=(\sqrt{2})^{k}<R(k) \leq 4^{k}=2^{2 k}
$$

${ }^{1}$ See [Conlon,2009] for state-of-the-art upper bounds.

Remarks on Ramsey numbers

- We have shown that

$$
2^{k / 2}=(\sqrt{2})^{k}<R(k) \leq 4^{k}=2^{2 k}
$$

- Despite decades of research by many combinatorists, nothing significantly better is known! ${ }^{1}$ In particular: no constant $c>\sqrt{2}$ is known such that $c^{k} \leq R(k)$, and no constant $c^{\prime}<4$ is known such that $R(k) \leq\left(c^{\prime}\right)^{k}$.
- For specific small k, more is known:

$$
\begin{aligned}
R(1)=1 ; \quad R(2) & =2 ; R(3)=6 ; R(4)=18 \\
43 & \leq R(5) \leq 49 \\
102 & \leq R(6) \leq 165
\end{aligned}
$$

${ }^{1}$ See [Conlon,2009] for state-of-the-art upper bounds.

Why can't we just compute $R(k)$ exactly, for small k ?

For each k, we know that $2^{k / 2}<R(k)<2^{2 k}$,
So, we could try to check, exhaustively, for each r such that $2^{k / 2}<r<2^{2 k}$, whether there is a graph G with r vertices such that G has no k-clique and no k-independent set.

Question: How many graphs on r vertices are there?
There are $2^{\binom{r}{2}}=2^{r(r-1) / 2}$ (labeled) graphs on r vertices.
So, for $r=2^{k}$, we would have to check $2^{2^{k}\left(2^{k}-1\right) / 2}$ graphs!!
So for $k=5$, just for $r=2^{5}$, we have to check 2^{496} graphs !!

Quote attributed to Paul Erdös:

Suppose an alien force, vastly more powerful than us, landed on Earth demanding to know the value of $R(5)$, or else they would destroy our planet.

Quote attributed to Paul Erdös:

Suppose an alien force, vastly more powerful than us, landed on Earth demanding to know the value of $R(5)$, or else they would destroy our planet.
In that case, I believe we should marshal all our computers, and all our mathematicians, in an attempt to find the value.

Quote attributed to Paul Erdös:

Suppose an alien force, vastly more powerful than us, landed on Earth demanding to know the value of $R(5)$, or else they would destroy our planet.
In that case, I believe we should marshal all our computers, and all our mathematicians, in an attempt to find the value.

But suppose instead they asked us for $R(6)$.

Quote attributed to Paul Erdös:

Suppose an alien force, vastly more powerful than us, landed on Earth demanding to know the value of $R(5)$, or else they would destroy our planet.
In that case, I believe we should marshal all our computers, and all our mathematicians, in an attempt to find the value.

But suppose instead they asked us for $R(6)$. In that case, I believe we should attempt to destroy the aliens.

