
Shortest Paths, and Dijkstra’s Algorithm:
Overview

Graphs with lengths/weights/costs on edges.

Shortest paths in edge-weighted graphs

Dijksta’s classic algorithm for computing single-source
shortest paths.
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Graphs with edge “length” (or “weight/cost”)
An edge-weighted directed graph, G = (V , E , w), has a
length/weight/cost function, w : E → N, which maps each
edge (u, v) ∈ E to a non-negative integer “length” (or “weight”,
or “cost”): w(u, v) ∈ N.
We can extend the “length” function w to a function
w : V × V → N ∪ {∞}, by letting w(u, u) = 0, for all u ∈ V ,
and letting w(u, v) =∞ for all (u, v) 6∈ E .

Consider a directed path:
x0e1x1e2 . . . enxn

from u = x0 ∈ V to v = xn ∈ V , in graph G = (V , E , w). The
length of this path is defined to be:

∑n
i=1 w(xi−1, xi).

Question: Given G and a pair of vertices u, v ∈ V , how do we
compute the length of the shortest path from u to v?
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Dijkstra’s single-source shortest-path algorithm
Input: Edge-weighted graph, G = (V , E , w), with (extended)
weight function w : V × V → N, and a source vertex s ∈ V .
Output: Function L : V → N ∪ {∞}, such that for all v ∈ V , L(v)
is the length of the shortest path from s to v in G.
Algorithm:

Initialize: S := {s}; L(s) := 0;
Initialize: L(v) := w(s, v), for all v ∈ V − {s};
while (S 6= V ) do

u := arg minz∈V−S {L(z)}
S := S ∪ {u}
for all v ∈ V − S such that (u, v) ∈ E do

L(v) := min{L(v), L(u) + w(u, v)}
end for

end while
Output function L(·).
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Why does Dijkstra’s algorithm work?
Claim: The While loop of Dijkstra’s algorithm maintains the
following invariant properties of the function L and the set S:

1. ∀v ∈ S, L(v) is the shortest path length from s to v in G.
2. ∀v ∈ V − S, L(v) is the length of the shortest path from s to

v which uses only vertices in S ∪ {v}.
3. For all u ∈ S and v ∈ V − S, L(u) ≤ L(v).

Note that the three invariants hold after initialization, just prior to
the first iteration of the while loop.
The claim follows once we prove (on board) that if the invariants
hold just prior to a while loop iteration then they hold just after.
Since each iteration adds one vertex to S, it follows that the
algorithm halts, at which point S = V , and thus, by invariant (1.),
the function L : V → N ∪ {∞} is the correct answer.
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Remarks on Dijkstra’s Algorithm
If Dijkstra’s algorithm is implemented naively, it has running
time O(n2), where n = |V |.
With clever data structures (e.g., so called “Fibbonacci
Heaps”) Dijkstra’s algorithm can be implemented much
more efficiently: essentially in time O(m + n log n) where,
n = |V | and m = |E |.
This increased efficiency can make a big difference on
huge “sparse” graphs, where m is much smaller than n2

(e.g., when out-degree is a fixed constant, m ∈ O(n)).
Dijkstra’s algorithm can be augmented to also output a
description of a shortest path from the source vertex s to
every other vertex v .

We will not describe these extensions, and we will certainly not
assume that you know them.
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Graph Colouring
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Graph Colouring

Suppose we have k distinct colours with which to colour the
vertices of a graph. Let [k ] = {1, . . . , k}. For an undirected
graph, G = (V ,E), an admissible vertex k -colouring of G is a
function c : V → [k ], such that for all u, v ∈ V , if {u, v} ∈ E
then c(u) 6= c(v).

For an integer k ≥ 1, we say an undirected graph G = (V ,E) is
k -colourable if there exists a k -colouring of G.

The chromatic number of G, denoted χ(G), is the smallest
positive integer k , such that G is k -colourable.
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Some observations about Graph colouring

Note that any graph G with n vertices in n-colourable.

The n-Clique, Kn, i.e., the complete graph on n vertices,
has chromatic number χ(Kn) = n. All its vertices must get
assigned different colours in any admissible colouring.

The clique number, ω(G), of a graph G is the maximum
positive integer r ≥ 1, such that Kr is a subgraph of G.

Note that for all graphs G, ω(G) ≤ χ(G): if G has an
r -clique then it is not (r − 1)-colorable.

However, in general, ω(G) 6= χ(G). For instance, The
5-cycle, C5, has ω(C5) = 2 < χ(C5) = 3.
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More observations about colouring

As already mentioned, any bipartite graph is 2-colourable.
Indeed, that is an equivalent definition of being bipartite.

More generally, a graph G is k -colourable precisely if it is
k -partite, meaning its vertices can be partitioned into k
disjoint sets such that all edges of the graph are between
nodes in different parts.
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Algorithms/complexity of colouring graphs

To determine whether a n-vertex graph G = (V ,E) is
k -colourable by “brute force”, we could try all possible
colourings of n nodes with k colours.

Difficulty: There are kn such k -colouring functions c : V → [k ].

Question: Is there an efficient (polynomial time) algorithm for
determining whether a given graph G is k -colourable?

Answer: No, no generally efficient (polynomial time) algorithm
is known, and even the problem of determining whether a given
graph is 3-colourable is NP-complete. (Even approximating the
chromatic number of a given graph is NP-hard.)

In practice, there are hueristic algorithms that do obtain good
colourings for many classes of graphs.
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Applications of Graph Colouring (many)
Final Exam Scheduling

There are n courses, {1, . . . ,n}.
Some courses have the same students registered for both,
so their exams can’t be scheduled at the same time.

Let G = ({1, . . . ,n},E) be a graph such that {i , j} ∈ E if and
only if i 6= j and courses i and j have a student in common.

Question: What is the minimum number of exam time slots
needed to schedule all n exams?

Answer: This is precisely the chromatic number χ(G) of G.

Furthermore, a k -colouring of G yields an admissible
schedule of exams into k time slots, allowing all students to
attend all their exams, as long as different “colors” are
scheduled in disjoint time slots.
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