Discrete Mathematics \& Mathematical Reasoning Chapter 7 (section 7.4): Random Variables, Expectation, and Variance

Kousha Etessami

U. of Edinburgh, UK

Expected Value (Expectation) of a Random Variable

Recall: A random variable (r.v.), is a function $X: \Omega \rightarrow \mathbb{R}$, that assigns a real value to each outcome in a sample space Ω.

The expected value, or expectation, or mean, of a random variable $X: \Omega \rightarrow \mathbb{R}$, denoted by $E(X)$, is defined by:

$$
E(X)=\sum_{s \in \Omega} P(s) X(s)
$$

Here $P: \Omega \rightarrow[0,1]$ is the underlying probability distribution on Ω.
Question: Let X be the r.v. outputing the number that comes up when a fair die is rolled. What is the expected value, $E(X)$, of X ?

Expected Value (Expectation) of a Random Variable

 Recall: A random variable (r.v.), is a function $X: \Omega \rightarrow \mathbb{R}$, that assigns a real value to each outcome in a sample space Ω.The expected value, or expectation, or mean, of a random variable $X: \Omega \rightarrow \mathbb{R}$, denoted by $E(X)$, is defined by:

$$
E(X)=\sum_{s \in \Omega} P(s) X(s)
$$

Here $P: \Omega \rightarrow[0,1]$ is the underlying probability distribution on Ω.
Question: Let X be the r.v. outputing the number that comes up when a fair die is rolled. What is the expected value, $E(X)$, of X ?

Answer:

$$
E(X)=\sum_{i=1}^{6} \frac{1}{6} \cdot i=\frac{21}{6}=\frac{7}{2} .
$$

A bad way to calculate expectation

The definition of expectation, $E(X)=\sum_{s \in \Omega} P(s) X(s)$, can be used directly to calculate $E(X)$. But sometimes this is horribly inefficient.
Example: Suppose that a biased coin, which comes up heads with probability p each time, is flipped 11 times consecutively. Question: What is the expected \# of heads?

A bad way to calculate expectation

The definition of expectation, $E(X)=\sum_{s \in \Omega} P(s) X(s)$, can be used directly to calculate $E(X)$. But sometimes this is horribly inefficient.
Example: Suppose that a biased coin, which comes up heads with probability p each time, is flipped 11 times consecutively.
Question: What is the expected \# of heads?
Bad way to answer this: Let's try to use the definition of $E(X)$ directly, with $\Omega=\{H, T\}^{11}$. Note that $|\Omega|=2^{11}=2048$. So, the sum $\sum_{s \in \Omega} P(s) X(s)$ has 2048 terms!
This is clearly not a practical way to compute $E(X)$. Is there a better way? Yes.

Better expression for the expectation

Recall $P(X=r)$ denotes the probability $P(\{s \in \Omega \mid X(s)=r\})$. Recall that for a function $X: \Omega \rightarrow \mathbb{R}$,

$$
\operatorname{range}(X)=\{r \in \mathbb{R} \mid \exists s \in \Omega \text { such that } X(s)=r\}
$$

Theorem: For a random variable $X: \Omega \rightarrow \mathbb{R}$,

$$
E(X)=\sum_{r \in \operatorname{range}(X)} P(X=r) \cdot r
$$

Proof: $E(X)=\sum_{s \in \Omega} P(s) X(s)$, but for each $r \in \operatorname{range}(X)$, if we sum all terms $P(s) X(s)$ such that $X(s)=r$, we get $P(X=r) \cdot r$ as their sum. So, summing over all $r \in \operatorname{range}(X)$ we get $E(X)=\sum_{r \in \operatorname{range}(X)} P(X=r) \cdot r$. So, if \mid range $(X) \mid$ is small, and if we can compute $P(X=r)$, then we need to sum a lot fewer terms to calculate $E(X)$.

Expected \# of successes in n Bernoulli trials

Theorem: The expected \# of successes in n (independent) Bernoulli trials, with probability p of success in each, is $n p$.

Note: We'll see later that we do not need independence for this.
First, a proof which uses mutual independence: For
$\Omega=\{H, T\}^{n}$, let $X: \Omega \rightarrow \mathbb{N}$ count the number of successes in n Bernoulli trials. Let $q=(1-p)$. Then...

$$
\begin{aligned}
E(X) & =\sum_{k=0}^{n} P(X=k) \cdot k \\
& =\sum_{k=1}^{n}\binom{n}{k} p^{k} q^{n-k} \cdot k
\end{aligned}
$$

The second equality holds because, assuming mutual independence, $P(X=k)$ is the binomial distribution $b(k ; n, p)$.

first proof continued

$$
\begin{aligned}
E(X) & =\sum_{k=0}^{n} P(X=k) \cdot k=\sum_{k=1}^{n}\binom{n}{k} p^{k} q^{n-k} \cdot k= \\
& =\sum_{k=1}^{n} \frac{n!}{k!(n-k)!} p^{k} q^{n-k} \cdot k=\sum_{k=1}^{n} \frac{n!}{(k-1)!(n-k)!} p^{k} q^{n-k} \\
& =\sum_{k=1}^{n} n \cdot \frac{(n-1)!}{(k-1)!(n-k)!} p^{k} q^{n-k}=n \sum_{k=1}^{n}\binom{n-1}{k-1} p^{k} q^{n-k} \\
& =n p \sum_{k=1}^{n}\binom{n-1}{k-1} p^{k-1} q^{n-k}=n p \sum_{j=0}^{n-1}\binom{n-1}{j} p^{j} q^{n-1-j} \\
& =n p(p+q)^{n-1} \\
& =n p . \quad \square
\end{aligned}
$$

We will soon see this was an unnecessarily complicated proof.

Expectation of a geometrically distributed r.v.

Question: A coin comes up heads with probability $p>0$ each time it is flipped. The coin is flipped repeatedly until it comes up heads. What is the expected number of times it is flipped?

Note: This simply asks: "What is the expected value $E(X)$ of a geometrically distributed random variable with parameter p ?"
Answer: $\Omega=\{H, T H, T T H, \ldots\}$, and $P\left(T^{k-1} H\right)=(1-p)^{k-1} p$. And clearly $X\left(T^{k-1} H\right)=k$. Thus $E(X)=\sum_{s \in \Omega} P(s) X(s)=$

$$
E(X)=\sum_{k=1}^{\infty}(1-p)^{k-1} p \cdot k=p \sum_{k=1}^{\infty} k(1-p)^{k-1}=p \cdot \frac{1}{p^{2}}=\frac{1}{p} .
$$

This is because: $\sum_{k=1}^{\infty} k \cdot x^{k-1}=\frac{1}{(1-x)^{2}}$, for $|x|<1$.
Example: If $p=1 / 4$, then the expected number of coin tosses before we see Heads for the first time is 4 .

Linearity of Expectation (VERY IMPORTANT)

Theorem (Linearity of Expectation): For any random variables X, X_{1}, \ldots, X_{n} on $\Omega, \quad E\left(X_{1}+X_{2}+\ldots+X_{n}\right)=E\left(X_{1}\right)+\ldots+E\left(X_{n}\right)$.
Furthermore, for any $a, b \in \mathbb{R}$,

$$
E(a X+b)=a E(X)+b .
$$

(In other words, the expectation function is a linear function.)

Proof:

$$
\begin{aligned}
& E\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{s \in \Omega} P(s) \sum_{i=1}^{n} X_{i}(s)=\sum_{i=1}^{n} \sum_{s \in \Omega} P(s) X_{i}(s)=\sum_{i=1}^{n} E\left(X_{i}\right) . \\
& E(a X+b)=\sum_{s \in \Omega} P(s)(a X(s)+b)=\left(a \sum_{s \in \Omega} P(s) X(s)\right)+b \sum_{s \in \Omega} P(s) \\
&=a E(X)+b .
\end{aligned}
$$

Using linearity of expectation

Theorem: The expected \# of successes in n (not necessarily independent) Bernoulli trials, with probability p of success in each trial, is $n p$.

Easy proof, via linearity of expectation: For $\Omega=\{H, T\}^{n}$, let X be the r.v. counting the expected number of successes, and for each i, let $X_{i}: \Omega \rightarrow \mathbb{R}$ be the binary r.v. defined by:

$$
X_{i}\left(\left(s_{1}, \ldots, s_{n}\right)\right)= \begin{cases}1 & \text { if } s_{i}=H \\ 0 & \text { if } s_{i}=T\end{cases}
$$

Note that $E\left(X_{i}\right)=p \cdot 1+(1-p) \cdot 0=p$, for all $i \in\{1, \ldots, n\}$. Also, clearly, $X=X_{1}+X_{2}+\ldots+X_{n}$, so:

$$
E(X)=E\left(X_{1}+\ldots+X_{n}\right)=\sum_{i=1}^{n} E\left(X_{i}\right)=n p
$$

Note: this holds even if the n coin tosses are totally correlated.

Using linearity of expectation, continued

Hatcheck problem: At a restaurant, the hat-check person forgets to put claim numbers on hats.
n customers check their hats in, and they each get a random hat back when they leave the restuarant.
What is the expected number, $E(X)$, of people who get their correct hat back?

Answer: Let X_{i} be the r.v. that is 1 if the i 'th customer gets their hat back, and 0 otherwise.
Clearly, $E(X)=E\left(\sum_{i} X_{i}\right)$.
Furthermore, $E\left(X_{i}\right)=P\left(i^{\prime}\right.$ th person gets its hat back) $=1 / n$.
Thus, $E(X)=n \cdot(1 / n)=1$.
This would be much harder to prove without using the linearity of expectation.
Note: $E(X)$ doesn't even depend on n in this case.

Independence of Random Variables

Definition: Two random variables, X and Y, are called independent if for all $r_{1}, r_{2} \in \mathbb{R}$:

$$
P\left(X=r_{1} \text { and } Y=r_{2}\right)=P\left(X=r_{1}\right) \cdot P\left(Y=r_{2}\right)
$$

Example: Two die are rolled. Let X_{1} be the number that comes up on die 1, and let X_{2} be the number that comes up on die 2. Then X_{1} and X_{2} are independent r.v.'s.

Theorem: If X and Y are independent random variables on the same space Ω. Then

$$
E(X Y)=E(X) E(Y)
$$

We will not prove this in class. (The proof is a simple re-arrangement of the sums in the definition of expectation. See Rosen's book for a proof.)

Variance

The "variance" and "standard deviation" of a r.v., X, give us ways to measure (roughly) "on average, how far off the value of the r.v. is from its expectation".

Variance and Standard Deviation

Definition: For a random variable X on a sample space Ω, the variance of X, denoted by $V(X)$, is defined by:

$$
V(X)=E\left((X-E(X))^{2}\right)=\sum_{s \in \Omega}(X(s)-E(X))^{2} P(s)
$$

The standard deviation of X, denoted $\sigma(X)$, is defined by

$$
\sigma(X)=\sqrt{V(X)}
$$

Example, and a useful identity for variance

Example: Consider the r.v., X, such that $P(X=0)=1$, and the r.v. Y, such that $P(Y=-10)=P(Y=10)=1 / 2$.

Then $E(X)=E(Y)=0$, but $V(X)=0=\sigma(X)$, whereas
$V(Y)=100$ and $\sigma(Y)=10$.

Theorem: For any random variable X,

$$
V(X)=E\left(X^{2}\right)-E(X)^{2}
$$

Proof:

$$
\begin{aligned}
V(X) & =E\left((X-E(X))^{2}\right) \\
& =E\left(X^{2}-2 X E(X)+E(X)^{2}\right) \\
& =E\left(X^{2}\right)-2 E(X) E(X)+E(X)^{2} \\
& =E\left(X^{2}\right)-E(X)^{2} .
\end{aligned}
$$

