Discrete Mathematics & Mathematical Reasoning Cardinality

Colin Stirling

Informatics

• $A = \{1, 2, 3\}$ is a finite set with 3 elements

- $A = \{1, 2, 3\}$ is a finite set with 3 elements
- $B = \{a, b, c, d\}$ and $C = \{1, 2, 3, 4\}$ are finite sets with 4 elements

- $A = \{1, 2, 3\}$ is a finite set with 3 elements
- $B = \{a, b, c, d\}$ and $C = \{1, 2, 3, 4\}$ are finite sets with 4 elements
- For finite sets, $|X| \le |Y|$ iff there is an injection $f: X \to Y$

A (10) A (10) A (10)

- $A = \{1, 2, 3\}$ is a finite set with 3 elements
- $B = \{a, b, c, d\}$ and $C = \{1, 2, 3, 4\}$ are finite sets with 4 elements
- For finite sets, $|X| \le |Y|$ iff there is an injection $f: X \to Y$
- For finite sets, |X| = |Y| iff there is an bijection $f : X \to Y$

A (10) A (10)

- $A = \{1, 2, 3\}$ is a finite set with 3 elements
- $B = \{a, b, c, d\}$ and $C = \{1, 2, 3, 4\}$ are finite sets with 4 elements
- For finite sets, $|X| \le |Y|$ iff there is an injection $f: X \to Y$
- For finite sets, |X| = |Y| iff there is an bijection $f : X \to Y$
- \mathbb{Z}^+ , \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} are infinite sets

< 回 > < 三 > < 三 >

- $A = \{1, 2, 3\}$ is a finite set with 3 elements
- $B = \{a, b, c, d\}$ and $C = \{1, 2, 3, 4\}$ are finite sets with 4 elements
- For finite sets, $|X| \le |Y|$ iff there is an injection $f: X \to Y$
- For finite sets, |X| = |Y| iff there is an bijection $f : X \to Y$
- \mathbb{Z}^+ , \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} are infinite sets
- When do two infinite sets have the same size?

イベト イモト イモト

- $A = \{1, 2, 3\}$ is a finite set with 3 elements
- $B = \{a, b, c, d\}$ and $C = \{1, 2, 3, 4\}$ are finite sets with 4 elements
- For finite sets, $|X| \leq |Y|$ iff there is an injection $f : X \to Y$
- For finite sets, |X| = |Y| iff there is an bijection $f : X \to Y$
- \mathbb{Z}^+ , \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} are infinite sets
- When do two infinite sets have the same size?
- Same answer

周 ト イ ヨ ト イ ヨ ト

Definition

• Two sets A and B have the same cardinality, |A| = |B|, iff there exists a bijection from A to B

A (10) A (10) A (10)

Definition

- Two sets A and B have the same cardinality, |A| = |B|, iff there exists a bijection from A to B
- $|A| \leq |B|$ iff there exists an injection from A to B

A (10) A (10)

Definition

- Two sets A and B have the same cardinality, |A| = |B|, iff there exists a bijection from A to B
- $|A| \leq |B|$ iff there exists an injection from A to B
- |A| < |B| iff $|A| \le |B|$ and $|A| \ne |B|$ (A smaller cardinality than B)

・ 何 ト ・ ヨ ト ・ ヨ

Definition

- Two sets A and B have the same cardinality, |A| = |B|, iff there exists a bijection from A to B
- $|A| \le |B|$ iff there exists an injection from A to B
- |A| < |B| iff $|A| \le |B|$ and $|A| \ne |B|$ (A smaller cardinality than B)

Unlike finite sets, for infinite sets $A \subset B$ and |A| = |B|

4 A N 4 A N 4

Definition

- Two sets A and B have the same cardinality, |A| = |B|, iff there exists a bijection from A to B
- $|A| \leq |B|$ iff there exists an injection from A to B
- |A| < |B| iff $|A| \le |B|$ and $|A| \ne |B|$ (A smaller cardinality than B)

Unlike finite sets, for infinite sets $A \subset B$ and |A| = |B|

Even = $\{2n \mid n \in \mathbb{N}\} \subset \mathbb{N}$ and $|Even| = |\mathbb{N}|$

• I > • < </p>

Definition

• Two sets A and B have the same cardinality, |A| = |B|, iff there exists a bijection from A to B

• $|A| \leq |B|$ iff there exists an injection from A to B

• |A| < |B| iff $|A| \le |B|$ and $|A| \ne |B|$ (A smaller cardinality than B)

Unlike finite sets, for infinite sets $A \subset B$ and |A| = |B|

Even = $\{2n \mid n \in \mathbb{N}\} \subset \mathbb{N}$ and $|\text{Even}| = |\mathbb{N}|$

 $f: Even \to \mathbb{N}$ with f(2n) = n is a bijection

< 回 ト < 三 ト < 三

Definition

 A set S is called countably infinite, iff it has the same cardinality as the positive integers, |Z⁺| = |S|

Definition

- A set S is called countably infinite, iff it has the same cardinality as the positive integers, |Z⁺| = |S|
- A set is called countable iff it is either finite or countably infinite

Definition

- A set S is called countably infinite, iff it has the same cardinality as the positive integers, |Z⁺| = |S|
- A set is called countable iff it is either finite or countably infinite
- A set that is not countable is called uncountable

Definition

- A set S is called countably infinite, iff it has the same cardinality as the positive integers, |Z⁺| = |S|
- A set is called countable iff it is either finite or countably infinite
- A set that is not countable is called uncountable
- \mathbb{N} is countably infinite; what is the bijection $f : \mathbb{Z}^+ \to \mathbb{N}$?

Definition

- A set S is called countably infinite, iff it has the same cardinality as the positive integers, |Z⁺| = |S|
- A set is called countable iff it is either finite or countably infinite
- A set that is not countable is called uncountable
- \mathbb{N} is countably infinite; what is the bijection $f : \mathbb{Z}^+ \to \mathbb{N}$?

 \mathbb{Z} is countably infinite; what is the bijection $g: \mathbb{Z}^+ \to \mathbb{Z}$?

Today 5 / 13

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

List fractions p/q with q = n in the n^{th} row

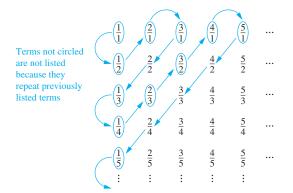
List fractions p/q with q = n in the n^{th} row

f traverses this list in the order for m = 2, 3, 4, ... visiting all p/q with p + q = m (and listing only new rationals)

イベト イモト イモト

List fractions p/q with q = n in the n^{th} row

f traverses this list in the order for m = 2, 3, 4, ... visiting all p/q with p + q = m (and listing only new rationals)



- 4 The built

Theorem

If A and B are countable sets, then $A \cup B$ is countable

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Theorem

If A and B are countable sets, then $A \cup B$ is countable

Proof in book

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Theorem

If A and B are countable sets, then $A \cup B$ is countable

Proof in book

Theorem

If I is countable and for each $i \in I$ the set A_i is countable then $\bigcup_{i \in I} A_i$ is countable

< 回 > < 三 > < 三 >

Theorem

If A and B are countable sets, then $A \cup B$ is countable

Proof in book

Theorem

If I is countable and for each $i \in I$ the set A_i is countable then $\bigcup_{i \in I} A_i$ is countable

Proof in book

< 回 > < 三 > < 三 >

Theorem

The set Σ^* of all finite strings over a finite alphabet Σ is countably infinite

Theorem

The set Σ^* of all finite strings over a finite alphabet Σ is countably infinite

Proof.

- First define an (alphabetical) ordering on the symbols in Σ Show that the strings can be listed in a sequence
 - First single string ε of length 0
 - Then all strings of length 1 in lexicographic order
 - Then all strings of length 2 in lexicographic order

Theorem

The set Σ^* of all finite strings over a finite alphabet Σ is countably infinite

Proof.

- First define an (alphabetical) ordering on the symbols in Σ Show that the strings can be listed in a sequence
 - First single string ε of length 0
 - Then all strings of length 1 in lexicographic order
 - Then all strings of length 2 in lexicographic order

• Each of these sets is countable; so is their union Σ*

Theorem

The set Σ^* of all finite strings over a finite alphabet Σ is countably infinite

Proof.

- First define an (alphabetical) ordering on the symbols in Σ Show that the strings can be listed in a sequence
 - First single string ε of length 0
 - Then all strings of length 1 in lexicographic order
 - Then all strings of length 2 in lexicographic order

• Each of these sets is countable; so is their union Σ*

The set of Java-programs is countable; a program is just a finite string

Infinite binary strings

• An infinite length string of bits 10010...

Infinite binary strings

- An infinite length string of bits 10010...
- Such a string is a function $d : \mathbb{Z}^+ \to \{0, 1\}$

Infinite binary strings

- An infinite length string of bits 10010...
- Such a string is a function $d : \mathbb{Z}^+ \to \{0, 1\}$
- With the property $d_m = d(m)$ is the *m*th symbol

Uncountable sets

Theorem

The set of infinite binary strings is uncountable

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Uncountable sets

Theorem

The set of infinite binary strings is uncountable

Proof.

Let *X* be the set of infinite binary strings. For a contradiction assume that a bijection $f : \mathbb{Z}^+ \to X$ exists. So, *f* must be onto (surjective). Assume that $f(i) = d^i$ for $i \in \mathbb{Z}^+$. So, $X = \{d^1, d^2, \ldots, d^m, \ldots\}$. Define the infinite binary string *d* as follows: $d_n = (d_n^n + 1) \mod 2$. But for each *m*, $d \neq d^m$ because $d_m \neq d_m^m$. So, *f* is not a surjection.

A (10) A (10)

Uncountable sets

Theorem

The set of infinite binary strings is uncountable

Proof.

Let *X* be the set of infinite binary strings. For a contradiction assume that a bijection $f : \mathbb{Z}^+ \to X$ exists. So, *f* must be onto (surjective). Assume that $f(i) = d^i$ for $i \in \mathbb{Z}^+$. So, $X = \{d^1, d^2, \ldots, d^m, \ldots\}$. Define the infinite binary string *d* as follows: $d_n = (d_n^n + 1) \mod 2$. But for each *m*, $d \neq d^m$ because $d_m \neq d_m^m$. So, *f* is not a surjection.

The technique used here is called diagonalization

A (10) A (10) A (10) A

Uncountable sets

Theorem

The set of infinite binary strings is uncountable

Proof.

Let *X* be the set of infinite binary strings. For a contradiction assume that a bijection $f : \mathbb{Z}^+ \to X$ exists. So, *f* must be onto (surjective). Assume that $f(i) = d^i$ for $i \in \mathbb{Z}^+$. So, $X = \{d^1, d^2, \ldots, d^m, \ldots\}$. Define the infinite binary string *d* as follows: $d_n = (d_n^n + 1) \mod 2$. But for each *m*, $d \neq d^m$ because $d_m \neq d_m^m$. So, *f* is not a surjection.

The technique used here is called diagonalization

A (10) A (10) A (10) A

Uncountable sets

Theorem

The set of infinite binary strings is uncountable

Proof.

Let *X* be the set of infinite binary strings. For a contradiction assume that a bijection $f : \mathbb{Z}^+ \to X$ exists. So, *f* must be onto (surjective). Assume that $f(i) = d^i$ for $i \in \mathbb{Z}^+$. So, $X = \{d^1, d^2, \ldots, d^m, \ldots\}$. Define the infinite binary string *d* as follows: $d_n = (d_n^n + 1) \mod 2$. But for each *m*, $d \neq d^m$ because $d_m \neq d_m^m$. So, *f* is not a surjection.

The technique used here is called diagonalization

Similar argument shows that \mathbb{R} via [0, 1] is uncountable using infinite decimal strings (see book)

More on the uncountable

Corollary The set of functions $F = \{f \mid f : \mathbb{Z} \to \mathbb{Z}\}$ is uncountable

More on the uncountable

Corollary The set of functions $F = \{f \mid f : \mathbb{Z} \to \mathbb{Z}\}$ is uncountable

The set of functions $C = \{f \mid f : \mathbb{Z} \to \mathbb{Z} \text{ is computable}\}$ is countable

More on the uncountable

Corollary The set of functions $F = \{f \mid f : \mathbb{Z} \to \mathbb{Z}\}$ is uncountable

The set of functions $C = \{f \mid f : \mathbb{Z} \to \mathbb{Z} \text{ is computable}\}$ is countable

Therefore, "most functions" in *F* are not computable!

イロト イポト イラト イラ

Theorem If $|A| \leq |B|$ and $|B| \leq |A|$ then |A| = |B|

Theorem If $|A| \leq |B|$ and $|B| \leq |A|$ then |A| = |B|

• Example |(0,1)| = |(0,1]|

(日)

Theorem If $|A| \leq |B|$ and $|B| \leq |A|$ then |A| = |B|

• Example |(0,1)| = |(0,1]|

• $|(0,1)| \le |(0,1]|$ using identity function

Theorem If $|A| \leq |B|$ and $|B| \leq |A|$ then |A| = |B|

• Example |(0,1)| = |(0,1]|

- $|(0,1)| \le |(0,1]|$ using identity function
- $|(0,1]| \le |(0,1)|$ use f(x) = x/2 as $(0,1/2] \subset (0,1)$

A (10) A (10)

Cantor's theorem

Theorem $|\boldsymbol{A}| < |\mathcal{P}(\boldsymbol{A})|$

Cantor's theorem

Theorem $|A| < |\mathcal{P}(A)|$

Proof.

Consider the injection $f : A \to \mathcal{P}(A)$ with $f(a) = \{a\}$ for any $a \in A$. Therefore, $|A| \leq |\mathcal{P}(A)|$. Next we show there is not a surjection $f : A \to \mathcal{P}(A)$. For a contradiction, assume that a surjection f exists. We define the set $B \subseteq A$: $B = \{x \in A \mid x \notin f(x)\}$. Since f is a surjection, there must exist an $a \in A$ s.t. B = f(a). Now there are two cases:

- **1** If $a \in B$ then, by definition of B, $a \notin B = f(a)$. Contradiction
- 3 If $a \notin B$ then $a \notin f(a)$; by definition of $B, a \in B$. Contradiction

• $\mathcal{P}(\mathbb{N})$ is not countable (in fact, $|\mathcal{P}(\mathbb{N})| = |\mathbb{R}|$)

- $\mathcal{P}(\mathbb{N})$ is not countable (in fact, $|\mathcal{P}(\mathbb{N})| = |\mathbb{R}|$)
- The Continuum Hypothesis claims there is no set S with $|\mathbb{N}| < |S| < |\mathbb{R}|$

A (10) A (10) A (10)

- $\mathcal{P}(\mathbb{N})$ is not countable (in fact, $|\mathcal{P}(\mathbb{N})| = |\mathbb{R}|$)
- The Continuum Hypothesis claims there is no set S with $|\mathbb{N}| < |S| < |\mathbb{R}|$
- It was 1st of Hilbert's 23 open problems presented in 1900.
 Shown to be independent of ZF set theory by Gödel/Cohen in 1963: cannot be proven/disproven in ZF

- $\mathcal{P}(\mathbb{N})$ is not countable (in fact, $|\mathcal{P}(\mathbb{N})| = |\mathbb{R}|$)
- The Continuum Hypothesis claims there is no set S with $|\mathbb{N}| < |S| < |\mathbb{R}|$
- It was 1st of Hilbert's 23 open problems presented in 1900.
 Shown to be independent of ZF set theory by Gödel/Cohen in 1963: cannot be proven/disproven in ZF
- There exists an infinite hierarchy of sets of ever larger cardinality

- $\mathcal{P}(\mathbb{N})$ is not countable (in fact, $|\mathcal{P}(\mathbb{N})| = |\mathbb{R}|$)
- The Continuum Hypothesis claims there is no set S with $|\mathbb{N}| < |S| < |\mathbb{R}|$
- It was 1st of Hilbert's 23 open problems presented in 1900.
 Shown to be independent of ZF set theory by Gödel/Cohen in 1963: cannot be proven/disproven in ZF
- There exists an infinite hierarchy of sets of ever larger cardinality
- $S_0 := \mathbb{N}$ and $S_{i+1} := \mathcal{P}(S_i)$

- $\mathcal{P}(\mathbb{N})$ is not countable (in fact, $|\mathcal{P}(\mathbb{N})| = |\mathbb{R}|$)
- The Continuum Hypothesis claims there is no set S with $|\mathbb{N}| < |S| < |\mathbb{R}|$
- It was 1st of Hilbert's 23 open problems presented in 1900.
 Shown to be independent of ZF set theory by Gödel/Cohen in 1963: cannot be proven/disproven in ZF
- There exists an infinite hierarchy of sets of ever larger cardinality
- $S_0 := \mathbb{N}$ and $S_{i+1} := \mathcal{P}(S_i)$
- $|S_0| < |S_1| < \ldots < |S_i| < |S_{i+1}| < \ldots$

A D A D A D A