Discrete Mathematics & Mathematical Reasoning Algorithms

Colin Stirling

Informatics

Algorithms

Definition

An algorithm is a finite sequence of precise instructions for performing a computation or for solving a problem

Algorithms

Definition

An algorithm is a finite sequence of precise instructions for performing a computation or for solving a problem

Problem Given n > 1 find its prime factorisation

Algorithms

Definition

An algorithm is a finite sequence of precise instructions for performing a computation or for solving a problem

Problem Given n > 1 find its prime factorisation

$$765 = 3 \cdot 3 \cdot 5 \cdot 17 = 3^2 \cdot 5 \cdot 17$$

Find all primes between 2 and n

Find all primes between 2 and n

- Write the numbers $2, \ldots, n$ into a list. Let i := 2
- Remove all strict multiples of i from the list
- **3** Let k be the smallest number present in the list s.t. k > i and let i := k
- 4 If $i > \sqrt{n}$ then stop else go to step 2

Find all primes between 2 and *n*

- Write the numbers $2, \ldots, n$ into a list. Let i := 2
- Remove all strict multiples of i from the list
- **3** Let k be the smallest number present in the list s.t. k > i and let i := k
- 4 If $i > \sqrt{n}$ then stop else go to step 2

Using repeated division, compute prime factorisation of n from list of primes

Find all primes between 2 and n

- Write the numbers $2, \ldots, n$ into a list. Let i := 2
- Remove all strict multiples of i from the list
- **3** Let k be the smallest number present in the list s.t. k > i and let i := k
- 4 If $i > \sqrt{n}$ then stop else go to step 2

Using repeated division, compute prime factorisation of *n* from list of primes

Is there a quicker algorithm? WHAT DOES THIS MEAN?

Input: it has input values from specified sets

- Input: it has input values from specified sets
- Output: from the input values, it produces the output values from specified sets which are the solution

- Input: it has input values from specified sets
- Output: from the input values, it produces the output values from specified sets which are the solution
- Correct: it should produce the correct output values for each set of input values

- Input: it has input values from specified sets
- Output: from the input values, it produces the output values from specified sets which are the solution
- Correct: it should produce the correct output values for each set of input values
- Finite: it should produce the output after a finite number of steps for any input

- Input: it has input values from specified sets
- Output: from the input values, it produces the output values from specified sets which are the solution
- Correct: it should produce the correct output values for each set of input values
- Finite: it should produce the output after a finite number of steps for any input
- Effective: it must be possible to perform each step correctly and in a finite amount of time

- Input: it has input values from specified sets
- Output: from the input values, it produces the output values from specified sets which are the solution
- Correct: it should produce the correct output values for each set of input values
- Finite: it should produce the output after a finite number of steps for any input
- Effective: it must be possible to perform each step correctly and in a finite amount of time
- Generality: it should work for all problems of the desired form

Recursive algorithm

Euclidian algorithm

```
algorithm gcd(x,y)
  if y = 0
  then return(x)
  else return(gcd(y,x mod y))
```

Euclidian algorithm (proof of correctness)

Lemma

If a = bq + r, where a, b, q, and r are positive integers, then gcd(a, b) = gcd(b, r)

Euclidian algorithm (proof of correctness)

Lemma

If a = bq + r, where a, b, q, and r are positive integers, then gcd(a, b) = gcd(b, r)

Proof.

- (⇒) Suppose that d divides both a and b. Then d also divides a bq = r. Hence, any common divisor of a and b must also be a common divisor of b and c
- (\Leftarrow) Suppose that d divides both b and r. Then d also divides bq + r = a. Hence, any common divisor of b and r must also be a common divisor of a and b.

Therefore, gcd(a, b) = gcd(b, r)

Description of algorithms in pseudocode

 Intermediate step between English prose and formal coding in a programming language

Description of algorithms in pseudocode

- Intermediate step between English prose and formal coding in a programming language
- Focus on the fundamental operation of the program, instead of peculiarities of a given programming language

Description of algorithms in pseudocode

- Intermediate step between English prose and formal coding in a programming language
- Focus on the fundamental operation of the program, instead of peculiarities of a given programming language
- Analyze the time required to solve a problem using an algorithm, independent of the actual programming language

Find the maximum value in a finite sequence of integers

Find the maximum value in a finite sequence of integers

Input finite sequence of integers a_1, \ldots, a_n

Find the maximum value in a finite sequence of integers

Input finite sequence of integers a_1, \ldots, a_n

Output a_k , $k \in \{1, ..., n\}$, where for all $j \in \{1, ..., n\}$, $a_j \le a_k$

Find the maximum value in a finite sequence of integers

Input finite sequence of integers a_1, \ldots, a_n

Output a_k , $k \in \{1, ..., n\}$, where for all $j \in \{1, ..., n\}$, $a_i \le a_k$

```
procedure maximum (a_1, \ldots, a_n)
max := a_1
for i:=2 to n
    if max < a_i
    then max := a_i
return max
```

Find the maximum value in a finite sequence of integers

Input finite sequence of integers a_1, \ldots, a_n

Output a_k , $k \in \{1, ..., n\}$, where for all $j \in \{1, ..., n\}$, $a_j \le a_k$

```
procedure maximum(a<sub>1</sub>,...,a<sub>n</sub>)
max:=a<sub>1</sub>
for i:=2 to n
   if max < a<sub>i</sub>
   then max:=a<sub>i</sub>
return max
```

How to prove correctness?

Linear search

Describe an algorithm for locating an item in a sequence of integers

Input integer x and finite sequence of distinct integers a_1, \ldots, a_n

Linear search

Describe an algorithm for locating an item in a sequence of integers Input integer x and finite sequence of distinct integers a_1, \ldots, a_n Output integer $i \in \{0, \ldots, n\}$ where $a_i = x$ or i = 0 if $x \neq a_i$ for all a_i

Linear search

Describe an algorithm for locating an item in a sequence of integers

```
Input integer x and finite sequence of distinct integers a_1, \ldots, a_n
Output integer i \in \{0, \ldots, n\} where a_i = x or i = 0 if x \neq a_i for all a_i
```

```
procedure linear_search(x, a_1, ..., a_n)
i:=1
while i\leqn and x\neq a_i
    i:=i+1
if i\leqn
then location:=i
else location:=0
return location
```

An algorithm for locating an item in an ordered sequence of integers

An algorithm for locating an item in an ordered sequence of integers

Input integer x and finite sequence of increasing integers a_1, \ldots, a_n

An algorithm for locating an item in an ordered sequence of integers Input integer x and finite sequence of increasing integers a_1, \ldots, a_n Output integer $i \in \{0, \ldots, n\}$ where $a_i = x$ or i = 0 if $x \neq a_i$ for all a_i

An algorithm for locating an item in an ordered sequence of integers Input integer x and finite sequence of increasing integers a_1, \ldots, a_n Output integer $i \in \{0, \ldots, n\}$ where $a_i = x$ or i = 0 if $x \neq a_j$ for all a_j Make use of property that sequence is of increasing integers

```
procedure binary_search (x, a_1, ..., a_n)
i := 1
j := n
while i<j
   m := |(i + j)/2|
   if x > a_m
   then i := m+1
   else j:=m
if x = a_i
then location:=i
else location:=0
return location
```

Big-O notation for function growth

Definition

Let $f,g:\mathbb{N}\to\mathbb{R}$ or $f,g:\mathbb{R}\to\mathbb{R}$. Then f is O(g) if there is a constant k and a positive constant c such that

$$\forall x > k \ (|f(x)| \le c|g(x)|)$$

Big-O notation for function growth

Definition

Let $f, g : \mathbb{N} \to \mathbb{R}$ or $f, g : \mathbb{R} \to \mathbb{R}$. Then f is O(g) if there is a constant k and a positive constant c such that

$$\forall x > k \ (|f(x)| \le c|g(x)|)$$

• c and k are witnesses to the relationship between f and g

Big-O notation for function growth

Definition

Let $f, g : \mathbb{N} \to \mathbb{R}$ or $f, g : \mathbb{R} \to \mathbb{R}$. Then f is O(g) if there is a constant k and a positive constant c such that

$$\forall x > k \ (|f(x)| \le c|g(x)|)$$

- c and k are witnesses to the relationship between f and g
- O(g) is the set of all functions f that satisfy the condition above: it would be formally correct to write $f \in O(g)$

Definition

Let $f, g : \mathbb{N} \to \mathbb{R}$ or $f, g : \mathbb{R} \to \mathbb{R}$. Then f is O(g) if there is a constant k and a positive constant c such that

$$\forall x > k \ (|f(x)| \le c|g(x)|)$$

- c and k are witnesses to the relationship between f and g
- O(g) is the set of all functions f that satisfy the condition above: it would be formally correct to write $f \in O(g)$
- Often the condition is: $\forall x > k \ (f(x) \le cg(x))$

•
$$f(x) = x^2 + 2x + 1$$

•
$$f(x) = x^2 + 2x + 1$$

• Show f(x) is O(g) where $g(x) = x^2$

- $f(x) = x^2 + 2x + 1$
- Show f(x) is O(g) where $g(x) = x^2$
- Show f(x) is also O(g) where $g(x) = x^3$

- $f(x) = x^2 + 2x + 1$
- Show f(x) is O(g) where $g(x) = x^2$
- Show f(x) is also O(g) where $g(x) = x^3$
- Show f(x) is not O(h) where h(x) = x

•
$$f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$$
 is $O(x^n)$

•
$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$$
 is $O(x^n)$

•
$$f(x) = 1 + 2 + ... + x$$
 is $O(x^2)$

•
$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$$
 is $O(x^n)$

- f(x) = 1 + 2 + ... + x is $O(x^2)$
- $\log(n)$ is O(n)

•
$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$$
 is $O(x^n)$

- f(x) = 1 + 2 + ... + x is $O(x^2)$
- $\log(n)$ is O(n)
- $n! = 1 \times 2 \times \cdots \times n$ is $O(n^n)$

•
$$f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$$
 is $O(x^n)$

- f(x) = 1 + 2 + ... + x is $O(x^2)$
- $\log(n)$ is O(n)
- $n! = 1 \times 2 \times \cdots \times n$ is $O(n^n)$
- $\log(n!)$ is $O(n\log(n))$

Definition

Let $f,g:\mathbb{N}\to\mathbb{R}$ or $f,g:\mathbb{R}\to\mathbb{R}$. Then f is $\Omega(g)$ if there if there is a constant k and a positive constant c such that

$$\forall x > k \ (|f(x)| \ge c|g(x)|)$$

Definition

Let $f, g : \mathbb{N} \to \mathbb{R}$ or $f, g : \mathbb{R} \to \mathbb{R}$. Then f is $\Omega(g)$ if there if there is a constant k and a positive constant c such that

$$\forall x > k \ (|f(x)| \ge c|g(x)|)$$

ullet c and k are witnesses to the relationship between f and g

Definition

Let $f, g : \mathbb{N} \to \mathbb{R}$ or $f, g : \mathbb{R} \to \mathbb{R}$. Then f is $\Omega(g)$ if there if there is a constant k and a positive constant c such that

$$\forall x > k \ (|f(x)| \ge c|g(x)|)$$

- ullet c and k are witnesses to the relationship between f and g
- Big-O gives an upper bound on the growth of a function, while Big-Omega gives a lower bound

Definition

Let $f,g:\mathbb{N}\to\mathbb{R}$ or $f,g:\mathbb{R}\to\mathbb{R}$. Then f is $\Omega(g)$ if there if there is a constant k and a positive constant c such that

$$\forall x > k \ (|f(x)| \geq c|g(x)|)$$

- c and k are witnesses to the relationship between f and g
- Big-O gives an upper bound on the growth of a function, while Big-Omega gives a lower bound
- Often the condition is: $\forall x > k \ (f(x) \ge cg(x))$

Definition

Let $f,g:\mathbb{N}\to\mathbb{R}$ or $f,g:\mathbb{R}\to\mathbb{R}$. Then f is $\Omega(g)$ if there if there is a constant k and a positive constant c such that

$$\forall x > k \ (|f(x)| \ge c|g(x)|)$$

- c and k are witnesses to the relationship between f and g
- Big-O gives an upper bound on the growth of a function, while Big-Omega gives a lower bound
- Often the condition is: $\forall x > k \ (f(x) \ge cg(x))$
- f is $\Omega(g)$ if and only if g is O(f)

Definition

Let $f, g : \mathbb{N} \to \mathbb{R}$ or $f, g : \mathbb{R} \to \mathbb{R}$. Then f is $\Theta(g)$ iff f is O(g) and $\Omega(g)$

Definition

Let $f, g : \mathbb{N} \to \mathbb{R}$ or $f, g : \mathbb{R} \to \mathbb{R}$. Then f is $\Theta(g)$ iff f is O(g) and $\Omega(g)$

f and g are of the same order

Definition

Let $f, g : \mathbb{N} \to \mathbb{R}$ or $f, g : \mathbb{R} \to \mathbb{R}$. Then f is $\Theta(g)$ iff f is O(g) and $\Omega(g)$

- f and g are of the same order
- f is $\Theta(g)$ iff there exists constants c_1 , c_2 and k such that

for all
$$x > k(c_1|g(x)| \le |f(x)| \le c_2|g(x)|)$$

Definition

Let $f, g : \mathbb{N} \to \mathbb{R}$ or $f, g : \mathbb{R} \to \mathbb{R}$. Then f is $\Theta(g)$ iff f is O(g) and $\Omega(g)$

- f and g are of the same order
- f is $\Theta(g)$ iff there exists constants c_1 , c_2 and k such that

for all
$$x > k(c_1|g(x)| \le |f(x)| \le c_2|g(x)|)$$

• $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ is $\Theta(x^n)$ if $a_n \neq 0$

Definition

Let $f, g : \mathbb{N} \to \mathbb{R}$ or $f, g : \mathbb{R} \to \mathbb{R}$. Then f is $\Theta(g)$ iff f is O(g) and $\Omega(g)$

- f and g are of the same order
- f is $\Theta(g)$ iff there exists constants c_1 , c_2 and k such that

for all
$$x > k(c_1|g(x)| \le |f(x)| \le c_2|g(x)|)$$

- $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ is $\Theta(x^n)$ if $a_n \neq 0$
- f(x) = 1 + 2 + ... + x is $\Theta(x^2)$

 Given an algorithm, how efficient is it for solving the problem relative to input size?

- Given an algorithm, how efficient is it for solving the problem relative to input size?
- How much time does it take or how much computer memory does it need

- Given an algorithm, how efficient is it for solving the problem relative to input size?
- How much time does it take or how much computer memory does it need
- We measure time complexity in terms of the number of basic operations executed and use big-O and big-Theta notation to estimate it

- Given an algorithm, how efficient is it for solving the problem relative to input size?
- How much time does it take or how much computer memory does it need
- We measure time complexity in terms of the number of basic operations executed and use big-O and big-Theta notation to estimate it
- Focus on worst-case time complexity. Derive an upper bound on the number of operations it uses to solve a problem with input of particular size (as opposed to the average-case complexity)

- Given an algorithm, how efficient is it for solving the problem relative to input size?
- How much time does it take or how much computer memory does it need
- We measure time complexity in terms of the number of basic operations executed and use big-O and big-Theta notation to estimate it
- Focus on worst-case time complexity. Derive an upper bound on the number of operations it uses to solve a problem with input of particular size (as opposed to the average-case complexity)
- Compute an f(n) as worst case for input size n

- Given an algorithm, how efficient is it for solving the problem relative to input size?
- How much time does it take or how much computer memory does it need
- We measure time complexity in terms of the number of basic operations executed and use big-O and big-Theta notation to estimate it
- Focus on worst-case time complexity. Derive an upper bound on the number of operations it uses to solve a problem with input of particular size (as opposed to the average-case complexity)
- Compute an f(n) as worst case for input size n
- Compare efficiency of different algorithms for the same problem

- Given an algorithm, how efficient is it for solving the problem relative to input size?
- How much time does it take or how much computer memory does it need
- We measure time complexity in terms of the number of basic operations executed and use big-O and big-Theta notation to estimate it
- Focus on worst-case time complexity. Derive an upper bound on the number of operations it uses to solve a problem with input of particular size (as opposed to the average-case complexity)
- Compute an f(n) as worst case for input size n
- Compare efficiency of different algorithms for the same problem
- For factorisation input size of integer n is its binary representation log n

Growth

Linear search

```
procedure linear_search(x,a1,...,an)
i:=1
while i≤n and x≠ai
    i:=i+1
if i≤n
then location:=i
else location:=0
return location
```

Count the number of comparisons

- Count the number of comparisons
- at each step two comparisons are made $i \le n$ and $x \ne a_i$

- Count the number of comparisons
- at each step two comparisons are made $i \le n$ and $x \ne a_i$
- to end the loop, one comparison $i \le n$ is made

- Count the number of comparisons
- at each step two comparisons are made $i \le n$ and $x \ne a_i$
- to end the loop, one comparison $i \le n$ is made
- after the loop, one more $i \le n$ comparison is made

- Count the number of comparisons
- at each step two comparisons are made $i \le n$ and $x \ne a_i$
- to end the loop, one comparison $i \le n$ is made
- after the loop, one more $i \le n$ comparison is made
- If $x = a_i$, 2i + 1 comparisons are used

- Count the number of comparisons
- at each step two comparisons are made $i \le n$ and $x \ne a_i$
- to end the loop, one comparison $i \le n$ is made
- after the loop, one more $i \le n$ comparison is made
- If $x = a_i$, 2i + 1 comparisons are used
- If x is not in the list, 2n + 2 comparisons are made which is the worst case

- Count the number of comparisons
- at each step two comparisons are made $i \le n$ and $x \ne a_i$
- to end the loop, one comparison $i \le n$ is made
- after the loop, one more $i \le n$ comparison is made
- If $x = a_i$, 2i + 1 comparisons are used
- If x is not in the list, 2n + 2 comparisons are made which is the worst case
- This means that the complexity is $\Theta(n)$

Binary search

```
procedure binary_search (x, a_1, ..., a_n)
i := 1
j := n
while i<j
   m := |(i + j)/2|
   if x > a_m
   then i := m+1
   else j:=m
if x = a_i
then location:=i
else location:=0
return location
```

• Assume (for simplicity) $n = 2^k$; so $k = log_2 n$

- Assume (for simplicity) $n = 2^k$; so $k = log_2 n$
- Two comparisons are made at each stage i < j and $x > a_m$

- Assume (for simplicity) $n = 2^k$; so $k = log_2 n$
- Two comparisons are made at each stage i < j and $x > a_m$
- At the first iteration the size of the list is 2^k ; after the first iteration it is 2^{k-1} . Then 2^{k-2} and so on until the size of the list is $2^1 = 2$

- Assume (for simplicity) $n = 2^k$; so $k = log_2 n$
- Two comparisons are made at each stage i < j and $x > a_m$
- At the first iteration the size of the list is 2^k ; after the first iteration it is 2^{k-1} . Then 2^{k-2} and so on until the size of the list is $2^1 = 2$
- At the last step, a comparison tells us that the size of the list is $2^0=1$ and the element is compared with the single remaining element

- Assume (for simplicity) $n = 2^k$; so $k = log_2 n$
- Two comparisons are made at each stage i < j and $x > a_m$
- At the first iteration the size of the list is 2^k ; after the first iteration it is 2^{k-1} . Then 2^{k-2} and so on until the size of the list is $2^1 = 2$
- At the last step, a comparison tells us that the size of the list is 2⁰ = 1 and the element is compared with the single remaining element
- Hence, at most $2k + 2 = 2log_2n + 2$ comparisons are made

- Assume (for simplicity) $n = 2^k$; so $k = log_2 n$
- Two comparisons are made at each stage i < j and $x > a_m$
- At the first iteration the size of the list is 2^k ; after the first iteration it is 2^{k-1} . Then 2^{k-2} and so on until the size of the list is $2^1 = 2$
- At the last step, a comparison tells us that the size of the list is $2^0=1$ and the element is compared with the single remaining element
- Hence, at most $2k + 2 = 2log_2n + 2$ comparisons are made
- This means that complexity is $\Theta(\log n)$

Computer time

Problem Size	Bit Operations Used					
	$\log n$	n	$n \log n$	n^2	2 ⁿ	n!
10	$3 \times 10^{-9} \text{ sec}$	$10^{-8} { m sec}$	$3 \times 10^{-8} \text{ sec}$	10 ⁻⁷ sec	10 ⁻⁶ sec	3×10^{-3} sec
10 ²	$7 \times 10^{-9} \text{ sec}$	$10^{-7} { m sec}$	$7 \times 10^{-7} \text{ sec}$	10 ⁻⁵ sec	$4 \times 10^{13} \text{ yr}$	*
10 ³	$1.0 \times 10^{-8} \text{ sec}$	$10^{-6} { m sec}$	$1 \times 10^{-5} \text{ sec}$	$10^{-3} { m sec}$	*	*
104	$1.3 \times 10^{-8} \text{ sec}$	$10^{-5} { m sec}$	$1 \times 10^{-4} \text{ sec}$	10 ⁻¹ sec	*	*
105	$1.7 \times 10^{-8} \text{ sec}$	$10^{-4} { m sec}$	$2 \times 10^{-3} \text{ sec}$	10 sec	*	*
106	$2 \times 10^{-8} \text{ sec}$	$10^{-3} sec$	$2 \times 10^{-2} \text{ sec}$	17 min	*	*

However, the time required for an algorithm to solve a problem of a specified size can be determined if all operations can be reduced to the bit operations used by the computer. Table 2 displays the time needed to solve problems of various sizes with an algorithm using the indicated number of bit operations. Times of more than 10^{100} years are indicated with an asterisk. (In Section 2.4 the number of bit operations.

• An algorithm is polynomial time if for some k it is $\Theta(n^k)$

- An algorithm is polynomial time if for some k it is $\Theta(n^k)$
- Tractable problem: there is a polynomial time algorithm that solves it. (Class P is tractable problems)

- An algorithm is polynomial time if for some k it is $\Theta(n^k)$
- Tractable problem: there is a polynomial time algorithm that solves it. (Class P is tractable problems)
- Intractable problem: there is no polynomial time algorithm that solves it

- An algorithm is polynomial time if for some k it is $\Theta(n^k)$
- Tractable problem: there is a polynomial time algorithm that solves it. (Class P is tractable problems)
- Intractable problem: there is no polynomial time algorithm that solves it
- ullet Class NP with P \subseteq NP and which has complete problems such as satisfiability of boolean formulas

- An algorithm is polynomial time if for some k it is $\Theta(n^k)$
- Tractable problem: there is a polynomial time algorithm that solves it. (Class P is tractable problems)
- Intractable problem: there is no polynomial time algorithm that solves it
- Class NP with P \subseteq NP and which has complete problems such as satisfiability of boolean formulas
- Open problem: NP ⊆ P ?

- An algorithm is polynomial time if for some k it is $\Theta(n^k)$
- Tractable problem: there is a polynomial time algorithm that solves it. (Class P is tractable problems)
- Intractable problem: there is no polynomial time algorithm that solves it
- ullet Class NP with P \subseteq NP and which has complete problems such as satisfiability of boolean formulas
- Open problem: NP ⊆ P ?
- If there is a polynomial time algorithm for any NP complete problem then P = NP

- An algorithm is polynomial time if for some k it is $\Theta(n^k)$
- Tractable problem: there is a polynomial time algorithm that solves it. (Class P is tractable problems)
- Intractable problem: there is no polynomial time algorithm that solves it
- ullet Class NP with P \subseteq NP and which has complete problems such as satisfiability of boolean formulas
- Open problem: NP ⊆ P ?
- ullet If there is a polynomial time algorithm for any NP complete problem then P=NP
- There are quick algorithms for testing whether a large integer is prime $O((\log n)^6)$

- An algorithm is polynomial time if for some k it is $\Theta(n^k)$
- Tractable problem: there is a polynomial time algorithm that solves it. (Class P is tractable problems)
- Intractable problem: there is no polynomial time algorithm that solves it
- ullet Class NP with P \subseteq NP and which has complete problems such as satisfiability of boolean formulas
- Open problem: NP ⊆ P ?
- If there is a polynomial time algorithm for any NP complete problem then P = NP
- There are quick algorithms for testing whether a large integer is prime $O((\log n)^6)$
- How hard is it to factorise integers?

- An algorithm is polynomial time if for some k it is $\Theta(n^k)$
- Tractable problem: there is a polynomial time algorithm that solves it. (Class P is tractable problems)
- Intractable problem: there is no polynomial time algorithm that solves it
- ullet Class NP with P \subseteq NP and which has complete problems such as satisfiability of boolean formulas
- Open problem: NP ⊆ P ?
- If there is a polynomial time algorithm for any NP complete problem then P = NP
- There are quick algorithms for testing whether a large integer is prime $O((\log n)^6)$
- How hard is it to factorise integers?
- We don't know if it belongs to P (it is in NP)

- An algorithm is polynomial time if for some k it is $\Theta(n^k)$
- Tractable problem: there is a polynomial time algorithm that solves it. (Class P is tractable problems)
- Intractable problem: there is no polynomial time algorithm that solves it
- \bullet Class NP with P \subseteq NP and which has complete problems such as satisfiability of boolean formulas
- Open problem: NP ⊆ P ?
- If there is a polynomial time algorithm for any NP complete problem then P = NP
- There are quick algorithms for testing whether a large integer is prime $O((\log n)^6)$
- How hard is it to factorise integers?
- We don't know if it belongs to P (it is in NP)
- It is very unlikely to be NP complete

