Discrete Mathematics & Mathematical Reasoning

Algorithms

Colin Stirling

Informatics
Definition

An algorithm is a finite sequence of precise instructions for performing a computation or for solving a problem.

Problem: Given $n > 1$, find its prime factorisation.

Example: $765 = 3^2 \cdot 5 \cdot 17$.

Colin Stirling (Informatics)
Definition

An algorithm is a finite sequence of precise instructions for performing a computation or for solving a problem.

Problem Given \(n > 1 \) find its prime factorisation.
Definition

An algorithm is a finite sequence of precise instructions for performing a computation or for solving a problem.

Problem Given $n > 1$ find its prime factorisation

$765 = 3 \cdot 3 \cdot 5 \cdot 17 = 3^2 \cdot 5 \cdot 17$
Use the sieve of Eratosthenes

Find all primes between 2 and \(n \)
Use the sieve of Eratosthenes

Find all primes between 2 and \(n \)

1. Write the numbers 2, \ldots, \(n \) into a list. Let \(i := 2 \)
2. Remove all strict multiples of \(i \) from the list
3. Let \(k \) be the smallest number present in the list s.t. \(k > i \) and let \(i := k \)
4. If \(i > \sqrt{n} \) then stop else go to step 2

Using repeated division, compute prime factorisation of \(n \) from list of primes

Is there a quicker algorithm? WHAT DOES THIS MEAN?
Use the sieve of Eratosthenes

Find all primes between 2 and n

1. Write the numbers 2, \ldots, n into a list. Let $i := 2$
2. Remove all strict multiples of i from the list
3. Let k be the smallest number present in the list s.t. $k > i$ and let $i := k$
4. If $i > \sqrt{n}$ then stop else go to step 2

Using repeated division, compute prime factorisation of n from list of primes
Use the sieve of Eratosthenes

Find all primes between 2 and \(n \)

1. Write the numbers 2, \ldots, n into a list. Let \(i := 2 \)
2. Remove all strict multiples of \(i \) from the list
3. Let \(k \) be the smallest number present in the list s.t. \(k > i \) and let \(i := k \)
4. If \(i > \sqrt{n} \) then stop else go to step 2

Using repeated division, compute prime factorisation of \(n \) from list of primes

Is there a quicker algorithm? WHAT DOES THIS MEAN?
Properties of an algorithm

- **Input**: it has input values from specified sets
Properties of an algorithm

- **Input:** it has input values from specified sets
- **Output:** from the input values, it produces the output values from specified sets which are the solution

Correct: it should produce the correct output values for each set of input values

Finite: it should produce the output after a finite number of steps for any input

Effective: it must be possible to perform each step correctly and in a finite amount of time

Generality: it should work for all problems of the desired form
Properties of an algorithm

- **Input**: it has input values from specified sets
- **Output**: from the input values, it produces the output values from specified sets which are the solution
- **Correct**: it should produce the correct output values for each set of input values
- **Finite**: it should produce the output after a finite number of steps for any input
- **Effective**: it must be possible to perform each step correctly and in a finite amount of time
- **Generality**: it should work for all problems of the desired form
Properties of an algorithm

- **Input:** it has input values from specified sets
- **Output:** from the input values, it produces the output values from specified sets which are the solution
- **Correct:** it should produce the correct output values for each set of input values
- **Finite:** it should produce the output after a finite number of steps for any input
Properties of an algorithm

- **Input**: it has input values from specified sets
- **Output**: from the input values, it produces the output values from specified sets which are the solution
- **Correct**: it should produce the correct output values for each set of input values
- **Finite**: it should produce the output after a finite number of steps for any input
- **Effective**: it must be possible to perform each step correctly and in a finite amount of time
Properties of an algorithm

- **Input**: it has input values from specified sets
- **Output**: from the input values, it produces the output values from specified sets which are the solution
- **Correct**: it should produce the correct output values for each set of input values
- **Finite**: it should produce the output after a finite number of steps for any input
- **Effective**: it must be possible to perform each step correctly and in a finite amount of time
- **Generality**: it should work for all problems of the desired form
Recursive algorithm

Euclidian algorithm

```plaintext
algorithm gcd(x, y)
    if y = 0
        then return(x)
    else return(gcd(y, x mod y))
```
Euclidian algorithm (proof of correctness)

Lemma

If \(a = bq + r \), where \(a, b, q, \) and \(r \) are positive integers, then \(\gcd(a, b) = \gcd(b, r) \)
Euclidian algorithm (proof of correctness)

Lemma

If \(a = bq + r \), where \(a, b, q, \) and \(r \) are positive integers, then
\[\gcd(a, b) = \gcd(b, r) \]

Proof.

\((\Rightarrow)\) Suppose that \(d \) divides both \(a \) and \(b \). Then \(d \) also divides \(a - bq = r \). Hence, any common divisor of \(a \) and \(b \) must also be a common divisor of \(b \) and \(r \)

\((\Leftarrow)\) Suppose that \(d \) divides both \(b \) and \(r \). Then \(d \) also divides \(bq + r = a \). Hence, any common divisor of \(b \) and \(r \) must also be a common divisor of \(a \) and \(b \).

Therefore, \(\gcd(a, b) = \gcd(b, r) \)
Description of algorithms in pseudocode

- Intermediate step between English prose and formal coding in a programming language

Focus on the fundamental operation of the program, instead of peculiarities of a given programming language.

Analyze the time required to solve a problem using an algorithm, independent of the actual programming language.
Description of algorithms in pseudocode

- Intermediate step between English prose and formal coding in a programming language
- Focus on the fundamental operation of the program, instead of peculiarities of a given programming language
Description of algorithms in pseudocode

- Intermediate step between English prose and formal coding in a programming language

- Focus on the fundamental operation of the program, instead of peculiarities of a given programming language

- Analyze the time required to solve a problem using an algorithm, independent of the actual programming language
Maximum

Find the maximum value in a finite sequence of integers

procedure maximum(a_1, ..., a_n)
 max := a_1
 for i := 2 to n
 if max < a_i then max := a_i
 return max

How to prove correctness?
Maximum

Find the maximum value in a finite sequence of integers

Input finite sequence of integers a_1, \ldots, a_n
Maximum

Find the maximum value in a finite sequence of integers

Input finite sequence of integers a_1, \ldots, a_n

Output a_k, $k \in \{1, \ldots, n\}$, where for all $j \in \{1, \ldots, n\}$, $a_j \leq a_k$
Maximum

Find the maximum value in a finite sequence of integers

Input finite sequence of integers a_1, \ldots, a_n

Output a_k, $k \in \{1, \ldots, n\}$, where for all $j \in \{1, \ldots, n\}$, $a_j \leq a_k$

```
procedure maximum($a_1, \ldots, a_n$)
max := $a_1$
for $i := 2$ to $n$
    if max < $a_i$
        then max := $a_i$
return max
```
Maximum

Find the maximum value in a finite sequence of integers

Input finite sequence of integers a_1, \ldots, a_n

Output a_k, $k \in \{1, \ldots, n\}$, where for all $j \in \{1, \ldots, n\}$, $a_j \leq a_k$

procedure maximum(a_1, \ldots, a_n)
 max := a_1
 for $i := 2$ to n
 if max < a_i
 then max := a_i
 return max

How to prove correctness?
Linear search

Describe an algorithm for locating an item in a sequence of integers

Input integer x and finite sequence of distinct integers a_1, \ldots, a_n
Linear search

Describe an algorithm for locating an item in a sequence of integers

Input integer x and finite sequence of distinct integers a_1, \ldots, a_n

Output integer $i \in \{0, \ldots, n\}$ where $a_i = x$ or $i = 0$ if $x \neq a_j$ for all a_j
Linear search

Describe an algorithm for locating an item in a sequence of integers

Input integer \(x \) and finite sequence of distinct integers \(a_1, \ldots, a_n \)

Output integer \(i \in \{0, \ldots, n\} \) where \(a_i = x \) or \(i = 0 \) if \(x \neq a_j \) for all \(a_j \)

```plaintext
procedure linear_search(x, a_1, ..., a_n)
i := 1
while i ≤ n and \( x \neq a_i \)
    \( i := i + 1 \)
if i ≤ n
    then location := i
else location := 0
return location
```

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 9 / 24
Binary search

An algorithm for locating an item in an ordered sequence of integers
Binary search

An algorithm for locating an item in an ordered sequence of integers

Input integer x and finite sequence of increasing integers a_1, \ldots, a_n
Binary search

An algorithm for locating an item in an ordered sequence of integers

Input integer x and finite sequence of increasing integers a_1, \ldots, a_n

Output integer $i \in \{0, \ldots, n\}$ where $a_i = x$ or $i = 0$ if $x \neq a_j$ for all a_j
Binary search

An algorithm for locating an item in an ordered sequence of integers

Input integer x and finite sequence of increasing integers a_1, \ldots, a_n

Output integer $i \in \{0, \ldots, n\}$ where $a_i = x$ or $i = 0$ if $x \neq a_j$ for all a_j

Make use of property that sequence is of increasing integers
Binary search

procedure binary_search(x, a_1, ..., a_n)
i := 1
j := n
while i < j
 m := ⌊(i + j)/2⌋
 if x > a_m
 then i := m + 1
 else j := m
if x = a_i
 then location := i
else location := 0
return location
Big-O notation for function growth

Definition

Let $f, g : \mathbb{N} \to \mathbb{R}$ or $f, g : \mathbb{R} \to \mathbb{R}$. Then f is $O(g)$ if there is a constant k and a positive constant c such that

$$\forall x > k \ (|f(x)| \leq c|g(x)|)$$
Big-O notation for function growth

Definition

Let $f, g : \mathbb{N} \to \mathbb{R}$ or $f, g : \mathbb{R} \to \mathbb{R}$. Then f is $O(g)$ if there is a constant k and a positive constant c such that

$$\forall x > k \ (|f(x)| \leq c|g(x)|)$$

- c and k are witnesses to the relationship between f and g
Definition

Let \(f, g : \mathbb{N} \rightarrow \mathbb{R} \) or \(f, g : \mathbb{R} \rightarrow \mathbb{R} \). Then \(f \) is \(O(g) \) if there is a constant \(k \) and a positive constant \(c \) such that

\[
\forall x > k \ (|f(x)| \leq c|g(x)|)
\]

- \(c \) and \(k \) are witnesses to the relationship between \(f \) and \(g \)
- \(O(g) \) is the set of all functions \(f \) that satisfy the condition above: it would be formally correct to write \(f \in O(g) \)
Big-O notation for function growth

Definition
Let \(f, g : \mathbb{N} \rightarrow \mathbb{R} \) or \(f, g : \mathbb{R} \rightarrow \mathbb{R} \). Then \(f \) is \(O(g) \) if there is a constant \(k \) and a positive constant \(c \) such that

\[
\forall x > k \ (|f(x)| \leq c|g(x)|)
\]

- \(c \) and \(k \) are witnesses to the relationship between \(f \) and \(g \)
- \(O(g) \) is the set of all functions \(f \) that satisfy the condition above: it would be formally correct to write \(f \in O(g) \)
- Often the condition is: \(\forall x > k \ (f(x) \leq cg(x)) \)
Examples

- \(f(x) = x^2 + 2x + 1 \)
Examples

- $f(x) = x^2 + 2x + 1$
- Show $f(x)$ is $O(g)$ where $g(x) = x^2$
Examples

- $f(x) = x^2 + 2x + 1$
- Show $f(x)$ is $O(g)$ where $g(x) = x^2$
- Show $f(x)$ is also $O(g)$ where $g(x) = x^3$
Examples

- $f(x) = x^2 + 2x + 1$
- Show $f(x)$ is $O(g)$ where $g(x) = x^2$
- Show $f(x)$ is also $O(g)$ where $g(x) = x^3$
- Show $f(x)$ is not $O(h)$ where $h(x) = x$
Examples

- $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ is $O(x^n)$
Examples

- $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ is $O(x^n)$
- $f(x) = 1 + 2 + \ldots + x$ is $O(x^2)$
Examples

- \(f(x) = a_nx^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0 \) is \(O(x^n) \)
- \(f(x) = 1 + 2 + \ldots + x \) is \(O(x^2) \)
- \(\log(n) \) is \(O(n) \)
Examples

- \(f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \) is \(O(x^n) \)
- \(f(x) = 1 + 2 + \ldots + x \) is \(O(x^2) \)
- \(\log(n) \) is \(O(n) \)
- \(n! = 1 \times 2 \times \cdots \times n \) is \(O(n^n) \)
Examples

- \(f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \) is \(O(x^n) \)
- \(f(x) = 1 + 2 + \ldots + x \) is \(O(x^2) \)
- \(\log(n) \) is \(O(n) \)
- \(n! = 1 \times 2 \times \ldots \times n \) is \(O(n^n) \)
- \(\log(n!) \) is \(O(n \log(n)) \)
Big-Omega notation for function growth

Definition
Let \(f, g : \mathbb{N} \rightarrow \mathbb{R} \) or \(f, g : \mathbb{R} \rightarrow \mathbb{R} \). Then \(f \) is \(\Omega(g) \) if there is a constant \(k \) and a positive constant \(c \) such that

\[
\forall x > k \ (|f(x)| \geq c|g(x)|)
\]

Often the condition is:

\[
\forall x > k \ (f(x) \geq cg(x))
\]

\(f \) is \(\Omega(g) \) if and only if \(g \) is \(O(f) \)
Definition

Let $f, g : \mathbb{N} \to \mathbb{R}$ or $f, g : \mathbb{R} \to \mathbb{R}$. Then f is $\Omega(g)$ if there is a constant k and a positive constant c such that

$$\forall x > k \ (|f(x)| \geq c|g(x)|)$$

- c and k are witnesses to the relationship between f and g
Big-Omega notation for function growth

Definition

Let \(f, g : \mathbb{N} \rightarrow \mathbb{R} \) or \(f, g : \mathbb{R} \rightarrow \mathbb{R} \). Then \(f \) is \(\Omega(g) \) if there is a constant \(k \) and a positive constant \(c \) such that

\[
\forall x > k \ (|f(x)| \geq c|g(x)|)
\]

- \(c \) and \(k \) are witnesses to the relationship between \(f \) and \(g \)
- Big-\(O \) gives an upper bound on the growth of a function, while Big-Omega gives a lower bound
Big-Omega notation for function growth

Definition

Let \(f, g : \mathbb{N} \rightarrow \mathbb{R} \) or \(f, g : \mathbb{R} \rightarrow \mathbb{R} \). Then \(f \) is \(\Omega(g) \) if there is a constant \(k \) and a positive constant \(c \) such that

\[
\forall x > k \ (|f(x)| \geq c|g(x)|)
\]

- \(c \) and \(k \) are witnesses to the relationship between \(f \) and \(g \)
- **Big-O gives an upper bound on the growth of a function, while Big-Omega gives a lower bound**
- Often the condition is: \(\forall x > k \ (f(x) \geq cg(x)) \)
Big-Omega notation for function growth

Definition

Let $f, g : \mathbb{N} \to \mathbb{R}$ or $f, g : \mathbb{R} \to \mathbb{R}$. Then f is $\Omega(g)$ if there is a constant k and a positive constant c such that

$$\forall x > k \ (|f(x)| \geq c|g(x)|)$$

- c and k are witnesses to the relationship between f and g
- Big-\(O\) gives an upper bound on the growth of a function, while Big-Omega gives a lower bound
- Often the condition is: $\forall x > k \ (f(x) \geq cg(x))$
- f is $\Omega(g)$ if and only if g is $O(f)$
Definition

Let \(f, g : \mathbb{N} \rightarrow \mathbb{R} \) or \(f, g : \mathbb{R} \rightarrow \mathbb{R} \). Then \(f \) is \(\Theta(g) \) iff \(f \) is \(O(g) \) and \(\Omega(g) \).
Big-Theta notation for function growth

Definition

Let $f, g : \mathbb{N} \rightarrow \mathbb{R}$ or $f, g : \mathbb{R} \rightarrow \mathbb{R}$. Then f is $\Theta(g)$ iff f is $O(g)$ and $\Omega(g)$

- f and g are of the same order
Big-Theta notation for function growth

Definition

Let $f, g : \mathbb{N} \to \mathbb{R}$ or $f, g : \mathbb{R} \to \mathbb{R}$. Then f is \(\Theta(g) \) iff f is $O(g)$ and $\Omega(g)$.

- f and g are of the same order
- f is \(\Theta(g) \) iff there exists constants c_1, c_2 and k such that

\[
\text{for all } x > k (c_1 |g(x)| \leq |f(x)| \leq c_2 |g(x)|)
\]
Big-Theta notation for function growth

Definition

Let $f, g : \mathbb{N} \to \mathbb{R}$ or $f, g : \mathbb{R} \to \mathbb{R}$. Then f is $\Theta(g)$ iff f is $O(g)$ and $\Omega(g)$

- f and g are of the same order
- f is $\Theta(g)$ iff there exists constants c_1, c_2 and k such that

$$
\text{for all } x > k (c_1 |g(x)| \leq |f(x)| \leq c_2 |g(x)|)
$$

- $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ is $\Theta(x^n)$ if $a_n \neq 0$
Definition

Let \(f, g : \mathbb{N} \to \mathbb{R} \) or \(f, g : \mathbb{R} \to \mathbb{R} \). Then \(f \) is \(\Theta(g) \) iff \(f \) is \(O(g) \) and \(\Omega(g) \)

- \(f \) and \(g \) are of the same order
- \(f \) is \(\Theta(g) \) iff there exists constants \(c_1, c_2 \) and \(k \) such that
 \[
 \text{for all } x > k (c_1 |g(x)| \leq |f(x)| \leq c_2 |g(x)|)
 \]

- \(f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \) is \(\Theta(x^n) \) if \(a_n \neq 0 \)
- \(f(x) = 1 + 2 + \ldots + x \) is \(\Theta(x^2) \)
Complexity of algorithms

- Given an algorithm, how efficient is it for solving the problem relative to input size?

How much time does it take or how much computer memory does it need?

We measure time complexity in terms of the number of basic operations executed and use big-O and big-Theta notation to estimate it.

Focus on worst-case time complexity. Derive an upper bound on the number of operations it uses to solve a problem with input of particular size (as opposed to the average-case complexity).

Compute an $f(n)$ as worst case for input size n.

Compare efficiency of different algorithms for the same problem.

For factorisation, input size of integer n is its binary representation $\log n$.

Colin Stirling (Informatics)
Discrete Mathematics (Chap 3)
Today 17 / 24
Complexity of algorithms

Given an algorithm, how efficient is it for solving the problem relative to input size?

How much time does it take or how much computer memory does it need

We measure time complexity in terms of the number of basic operations executed and use big-O and big-Θ notation to estimate it.

Focus on worst-case time complexity. Derive an upper bound on the number of operations it uses to solve a problem with input of particular size (as opposed to the average-case complexity)

Compute an $f(n)$ as worst case for input size n

Compare efficiency of different algorithms for the same problem

For factorisation input size of integer n is its binary representation $\log n$
Complexity of algorithms

- Given an algorithm, how efficient is it for solving the problem relative to input size?
- How much time does it take or how much computer memory does it need?
- We measure time complexity in terms of the number of basic operations executed and use big-O and big-Theta notation to estimate it.

Focus on worst-case time complexity. Derive an upper bound on the number of operations it uses to solve a problem with input of particular size (as opposed to the average-case complexity). Compute an $f(n)$ as worst case for input size n.

Compare efficiency of different algorithms for the same problem. For factorisation, input size of integer n is its binary representation $\log n$.

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 17 / 24
Complexity of algorithms

- Given an algorithm, how efficient is it for solving the problem relative to input size?
- How much time does it take or how much computer memory does it need?
- We measure time complexity in terms of the number of basic operations executed and use big-O and big-Theta notation to estimate it.
- Focus on worst-case time complexity. Derive an upper bound on the number of operations it uses to solve a problem with input of particular size (as opposed to the average-case complexity).
Complexity of algorithms

- Given an algorithm, how efficient is it for solving the problem relative to input size?
- How much time does it take or how much computer memory does it need?
- We measure time complexity in terms of the number of basic operations executed and use big-O and big-Theta notation to estimate it.
- Focus on worst-case time complexity. Derive an upper bound on the number of operations it uses to solve a problem with input of particular size (as opposed to the average-case complexity).
- Compute an $f(n)$ as worst case for input size n.

Colin Stirling (Informatics)
Complexity of algorithms

- Given an algorithm, how efficient is it for solving the problem relative to input size?
- How much time does it take or how much computer memory does it need?
- We measure time complexity in terms of the number of basic operations executed and use big-O and big-Theta notation to estimate it.
- Focus on worst-case time complexity. Derive an upper bound on the number of operations it uses to solve a problem with input of particular size (as opposed to the average-case complexity).
- Compute an $f(n)$ as worst case for input size n.
- Compare efficiency of different algorithms for the same problem.
Complexity of algorithms

- Given an algorithm, how efficient is it for solving the problem relative to input size?
- How much time does it take or how much computer memory does it need?
- We measure time complexity in terms of the number of basic operations executed and use big-\(O\) and big-Theta notation to estimate it.
- Focus on worst-case time complexity. Derive an upper bound on the number of operations it uses to solve a problem with input of particular size (as opposed to the average-case complexity).
- Compute an \(f(n)\) as worst case for input size \(n\).
- Compare efficiency of different algorithms for the same problem.
- For factorisation input size of integer \(n\) is its binary representation \(\log n\).
Growth
procedure linear_search(x, a_1, ..., a_n)
 i := 1
 while i ≤ n and x ≠ a_i
 i := i + 1
 if i ≤ n
 then location := i
 else location := 0
 return location
Worst-Case complexity of linear search

- Count the number of comparisons

\[i \leq n \quad \text{and} \quad x \neq a_i \]

After the loop, one more comparison is made.

If \(x = a_i \), \(2i + 1 \) comparisons are used.

If \(x \) is not in the list, \(2n + 2 \) comparisons are made, which is the worst case.

This means that the complexity is \(\Theta(n) \).
Worst-Case complexity of linear search

- Count the number of comparisons
- at each step two comparisons are made $i \leq n$ and $x \neq a_i$
Worst-Case complexity of linear search

- Count the number of comparisons
- at each step two comparisons are made $i \leq n$ and $x \neq a_i$
- to end the loop, one comparison $i \leq n$ is made

If $x = a_i$, $2i + 1$ comparisons are used

If x is not in the list, $2n + 2$ comparisons are made which is the worst case

This means that the complexity is $\Theta(n)$
Worst-Case complexity of linear search

- Count the number of comparisons
- at each step two comparisons are made $i \leq n$ and $x \neq a_i$
- to end the loop, one comparison $i \leq n$ is made
- after the loop, one more $i \leq n$ comparison is made

If $x = a_i$, $2i + 1$ comparisons are used
If x is not in the list, $2n + 2$ comparisons are made which is the worst case
This means that the complexity is $\Theta(n)$
Worst-Case complexity of linear search

- Count the number of comparisons
- at each step two comparisons are made $i \leq n$ and $x \neq a_i$
- to end the loop, one comparison $i \leq n$ is made
- after the loop, one more $i \leq n$ comparison is made
- If $x = a_i$, $2i + 1$ comparisons are used
Worst-Case complexity of linear search

- Count the number of comparisons
- at each step two comparisons are made $i \leq n$ and $x \neq a_i$
- to end the loop, one comparison $i \leq n$ is made
- after the loop, one more $i \leq n$ comparison is made
- If $x = a_i$, $2i + 1$ comparisons are used
- If x is not in the list, $2n + 2$ comparisons are made which is the worst case

This means that the complexity is $\Theta(n)$
Worst-Case complexity of linear search

- Count the number of comparisons
- at each step two comparisons are made \(i \leq n \) and \(x \neq a_i \)
- to end the loop, one comparison \(i \leq n \) is made
- after the loop, one more \(i \leq n \) comparison is made
- If \(x = a_i \), \(2i + 1 \) comparisons are used
- If \(x \) is not in the list, \(2n + 2 \) comparisons are made which is the worst case
- This means that the complexity is \(\Theta(n) \)
procedure binary_search(x, a_1, ..., a_n)
i := 1
j := n
while i < j
 m := ⌊(i + j)/2⌋
 if x > a_m
 then i := m + 1
 else j := m
if x = a_i
 then location := i
else location := 0
return location
Worst-Case complexity of binary search

- Assume (for simplicity) $n = 2^k$; so $k = \log_2 n$
Worst-Case complexity of binary search

- Assume (for simplicity) \(n = 2^k \); so \(k = \log_2 n \)
- Two comparisons are made at each stage \(i < j \) and \(x > a_m \)
Worst-Case complexity of binary search

- Assume (for simplicity) $n = 2^k$; so $k = \log_2 n$
- Two comparisons are made at each stage $i < j$ and $x > a_m$
- At the first iteration the size of the list is 2^k; after the first iteration it is 2^{k-1}. Then 2^{k-2} and so on until the size of the list is $2^1 = 2$
Worst-Case complexity of binary search

- Assume (for simplicity) $n = 2^k$; so $k = \log_2 n$
- Two comparisons are made at each stage $i < j$ and $x > a_m$
- At the first iteration the size of the list is 2^k; after the first iteration it is 2^{k-1}. Then 2^{k-2} and so on until the size of the list is $2^1 = 2$
- At the last step, a comparison tells us that the size of the list is $2^0 = 1$ and the element is compared with the single remaining element
Worst-Case complexity of binary search

- Assume (for simplicity) $n = 2^k$; so $k = \log_2 n$
- Two comparisons are made at each stage $i < j$ and $x > a_m$
- At the first iteration the size of the list is 2^k; after the first iteration it is 2^{k-1}. Then 2^{k-2} and so on until the size of the list is $2^1 = 2$
- At the last step, a comparison tells us that the size of the list is $2^0 = 1$ and the element is compared with the single remaining element
- Hence, at most $2k + 2 = 2\log_2 n + 2$ comparisons are made
Worst-Case complexity of binary search

- Assume (for simplicity) \(n = 2^k \); so \(k = \log_2 n \)
- Two comparisons are made at each stage \(i < j \) and \(x > a_m \)
- At the first iteration the size of the list is \(2^k \); after the first iteration it is \(2^{k-1} \). Then \(2^{k-2} \) and so on until the size of the list is \(2^1 = 2 \)
- At the last step, a comparison tells us that the size of the list is \(2^0 = 1 \) and the element is compared with the single remaining element
- Hence, at most \(2k + 2 = 2\log_2 n + 2 \) comparisons are made
- This means that complexity is \(\Theta(\log n) \)
TABLE 2 The Computer Time Used by Algorithms.

<table>
<thead>
<tr>
<th>Problem Size</th>
<th>(n \log n)</th>
<th>(n)</th>
<th>(n^2)</th>
<th>(2^n)</th>
<th>(n!)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>(3 \times 10^{-6}) sec</td>
<td>(10^{-8}) sec</td>
<td>(10^{-7}) sec</td>
<td>(10^{-6}) sec</td>
<td>(3 \times 10^{-3}) sec</td>
</tr>
<tr>
<td>(10^2)</td>
<td>(7 \times 10^{-9}) sec</td>
<td>(10^{-7}) sec</td>
<td>(10^{-5}) sec</td>
<td>(4 \times 10^{13}) yr</td>
<td>*</td>
</tr>
<tr>
<td>(10^3)</td>
<td>(1.0 \times 10^{-8}) sec</td>
<td>(10^{-6}) sec</td>
<td>(10^{-3}) sec</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>(10^4)</td>
<td>(1.3 \times 10^{-8}) sec</td>
<td>(10^{-5}) sec</td>
<td>(10^{-1}) sec</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>(10^5)</td>
<td>(1.7 \times 10^{-8}) sec</td>
<td>(10^{-4}) sec</td>
<td>(2 \times 10^{-3}) sec</td>
<td>10 sec</td>
<td>*</td>
</tr>
<tr>
<td>(10^6)</td>
<td>(2 \times 10^{-8}) sec</td>
<td>(10^{-3}) sec</td>
<td>(2 \times 10^{-2}) sec</td>
<td>17 min</td>
<td>*</td>
</tr>
</tbody>
</table>

However, the time required for an algorithm to solve a problem of a specified size can be determined if all operations can be reduced to the bit operations used by the computer. Table 2 displays the time needed to solve problems of various sizes with an algorithm using the indicated number of bit operations. Times of more than \(10^{100} \) years are indicated with an asterisk. (In Section 2.4 the number of bit operations...
Further topics

- An algorithm is polynomial time if for some k it is $\Theta(n^k)$
Further topics

- An algorithm is polynomial time if for some k it is $\Theta(n^k)$
- Tractable problem: there is a polynomial time algorithm that solves it. (Class P is tractable problems)
Further topics

- An algorithm is polynomial time if for some k it is $\Theta(n^k)$
- Tractable problem: there is a polynomial time algorithm that solves it. (Class P is tractable problems)
- Intractable problem: there is no polynomial time algorithm that solves it

Open problem: NP \subseteq P ?

If there is a polynomial time algorithm for any NP complete problem then P = NP

There are quick algorithms for testing whether a large integer is prime $O((\log n)^6)$

How hard is it to factorise integers?

We don't know if it belongs to P (it is in NP)

It is very unlikely to be NP complete
Further topics

- An algorithm is polynomial time if for some k it is $\Theta(n^k)$
- Tractable problem: there is a polynomial time algorithm that solves it. (Class P is tractable problems)
- Intractable problem: there is no polynomial time algorithm that solves it
- Class NP with $P \subseteq NP$ and which has complete problems such as satisfiability of boolean formulas
Further topics

- An algorithm is polynomial time if for some \(k \) it is \(\Theta(n^k) \)
- Tractable problem: there is a polynomial time algorithm that solves it. (Class P is tractable problems)
- Intractable problem: there is no polynomial time algorithm that solves it
- Class NP with \(P \subseteq NP \) and which has complete problems such as satisfiability of boolean formulas
- Open problem: \(NP \subseteq P \)?
Further topics

- An algorithm is polynomial time if for some k it is $\Theta(n^k)$
- Tractable problem: there is a polynomial time algorithm that solves it. (Class P is tractable problems)
- Intractable problem: there is no polynomial time algorithm that solves it
- Class NP with $P \subseteq NP$ and which has complete problems such as satisfiability of boolean formulas
- Open problem: $NP \subseteq P$?
- If there is a polynomial time algorithm for any NP complete problem then $P = NP$
Further topics

- An algorithm is polynomial time if for some k it is $\Theta(n^k)$
- Tractable problem: there is a polynomial time algorithm that solves it. (Class P is tractable problems)
- Intractable problem: there is no polynomial time algorithm that solves it
- Class NP with $P \subseteq NP$ and which has complete problems such as satisfiability of boolean formulas
- Open problem: $NP \subseteq P$?
- If there is a polynomial time algorithm for any NP complete problem then $P = NP$
- There are quick algorithms for testing whether a large integer is prime $O((\log n)^6)$
Further topics

- An algorithm is polynomial time if for some k it is $\Theta(n^k)$
- Tractable problem: there is a polynomial time algorithm that solves it. (Class P is tractable problems)
- Intractable problem: there is no polynomial time algorithm that solves it
- Class NP with $P \subseteq NP$ and which has complete problems such as satisfiability of boolean formulas
- Open problem: $NP \subseteq P$?
- If there is a polynomial time algorithm for any NP complete problem then $P = NP$
- There are quick algorithms for testing whether a large integer is prime $O((\log n)^6)$
- How hard is it to factorise integers?
Further topics

- An algorithm is polynomial time if for some k it is $\Theta(n^k)$
- Tractable problem: there is a polynomial time algorithm that solves it. (Class P is tractable problems)
- Intractable problem: there is no polynomial time algorithm that solves it
- Class NP with $P \subseteq NP$ and which has complete problems such as satisfiability of boolean formulas
- Open problem: $NP \subseteq P$?
- If there is a polynomial time algorithm for any NP complete problem then $P = NP$
- There are quick algorithms for testing whether a large integer is prime $O((\log n)^6)$
- How hard is it to factorise integers?
- We don’t know if it belongs to P (it is in NP)
Further topics

- An algorithm is polynomial time if for some \(k \) it is \(\Theta(n^k) \)
- Tractable problem: there is a polynomial time algorithm that solves it. (Class P is tractable problems)
- Intractable problem: there is no polynomial time algorithm that solves it
- Class NP with \(P \subseteq NP \) and which has complete problems such as satisfiability of boolean formulas
- Open problem: \(NP \subseteq P \) ?
- If there is a polynomial time algorithm for any NP complete problem then \(P = NP \)
- There are quick algorithms for testing whether a large integer is prime \(O((\log n)^6) \)
- How hard is it to factorise integers?
- We don’t know if it belongs to P (it is in NP)
- It is very unlikely to be NP complete