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Division
Definition
If a and b are integers with a 6= 0, then a divides b, written a|b, if there
exists an integer c such that b = ac.

b is a multiple of a and a is a factor of b

3 | (−12) 3 | 0 3 6 |7 (where 6 | “not divides”)

Theorem
1 If a|b and a|c, then a|(b + c)

2 If a|b, then a|bc
3 If a|b and b|c, then a|c

Proof.
We just prove the first; the others are similar. Assume a|b and a|c. So,
there exists integers d , e such that b = da and c = ea. So
b + c = da + ea = (d + e)a and, therefore, a|(b + c).
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Division algorithm (not really an algorithm!)
Theorem
If a is an integer and d a positive integer, then there are unique
integers q and r , with 0 ≤ r < d, such that a = dq + r

q is quotient and r the remainder; q = a div d and r = a mod d

a = 102 and d = 12 q = 8 and r = 6 102 = 12 · 8 + 6
a = −14 and d = 6 q = −3 and r = 4 −14 = 6 · (−3) + 4

Proof.
Let q be the largest integer such that dq ≤ a; then r = a− dq and so,
a = dq + r for 0 ≤ r < d : if r ≥ d then d(q + 1) ≤ a which contradicts
that q is largest. So, there is at least one such q and r . Assume that
there is more than one: a = dq1 + r1, a = dq2 + r2, and
(q1, r1) 6= (q2, r2). If q1 = q2 then r1 = a− dq1 = a− dq2 = r2. Assume
q1 6= q2; now we obtain a contradiction; as dq1 + r1 = dq2 + r2,
d = (r1 − r2)/(q2 − q1) which is impossible because r1 − r2 < d .
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Congruent modulo m relation

Definition
If a and b are integers and m is a positive integer, then a is congruent
to b modulo m, written a ≡ b (mod m), iff m|(a− b)

17 ≡ 5 (mod 6) because 6 divides 17− 5 = 12

−17 6≡ 5 (mod 6) because 6 6 | (−22)

−17 ≡ 1 (mod 6)

24 6≡ 14 (mod 6) because 6 6 | 10
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Congruence is an equivalence relation

Theorem
a ≡ b (mod m) iff a mod m = b mod m

Proof.
Assume a ≡ b (mod m); so m|(a− b). If a = q1m + r1 and
b = q2m + r2 where 0 ≤ r1 < m and 0 ≤ r2 < m it follows that r1 = r2
and so a mod m = b mod m. If a mod m = b mod m then a and b
have the same remainder so a = q1m + r and b = q2m + r ; therefore
a− b = (q1 − q2)m, and so m|(a− b).

≡ (mod m) is an equivalence relation on integers
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A simple theorem of congruence

Theorem
a ≡ b (mod m) iff there is an integer k such that a = b + km

Proof.
If a ≡ b (mod m), then by the definition of congruence m|(a− b).
Hence, there is an integer k such that a− b = km and equivalently
a = b + km. If there is an integer k such that a = b + km, then
km = a− b. Hence, m|(a− b) and a ≡ b (mod m).
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Congruences of sums, differences, and products

Theorem
If a ≡ b (mod m) and c ≡ d (mod m), then a + c ≡ b + d (mod m) and
ac ≡ bd (mod m)

Proof.
Since a ≡ b (mod m) and c ≡ d (mod m), by the previous theorem,
there are integers s and t with b = a + sm and d = c + tm. Therefore,
b + d = (a + sm) + (c + tm) = (a + c) + m(s + t), and
bd = (a + sm)(c + tm) = ac + m(at + cs + stm). Hence,
a + c ≡ b + d (mod m) and ac ≡ bd (mod m)

Corollary
(a + b) mod m = ((a mod m) + (b mod m)) mod m
ab mod m = ((a mod m)(b mod m)) mod m
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Arithmetic modulo m

Zm = {0, 1, . . . , m − 1}

+m on Zm is a +m b = (a + b) mod m

·m on Zm is define a ·m b = (a · b) mod m

Find 7 +11 9 and −7 ·11 9
7 +11 9 = (7 + 9) mod 11 = 16 mod 11 = 5
−7 ·11 9 = (−7 · 9) mod 11 = −63 mod 11 = 3
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Primes

Definition
A positive integer p > 1 is called prime iff the only positive factors of p
are 1 and p. Otherwise it is called composite

Theorem (Fundamental Theorem of Arithmetic)
Every positive integer greater than 1 can be written uniquely as a
prime or as the product of its prime factors, written in order of
nondecreasing size

765 = 3 · 3 · 5 · 17 = 32 · 5 · 17
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Proof of fundamental theorem

Theorem (Fundamental Theorem of Arithmetic)
Every positive integer greater than 1 can be written uniquely as a
prime or as the product of its prime factors, written in order of
nondecreasing size

Showed by induction if n > 1 is an integer then n can be written as a
product of primes

Missing is uniqueness

Lemma if p is prime and p|a1a2 . . . an where each ai is an integer, then
p|aj for some 1 ≤ j ≤ n

By induction too

Now result follows
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There are infinitely many primes

Lemma Every natural number greater than one is either prime or it has
a prime divisor

Follows from fundamental theorem

Proof Suppose towards a contradiction that there are only finitely many
primes p1, p2, p3, . . . , pk . Consider the number q = p1p2p3 . . . pk + 1,
the product of all the primes plus one. By hypothesis q cannot be
prime because it is strictly larger than all the primes. Thus, by the
lemma, it has a prime divisor, p. Because p1, p2, p3, . . . , pk are all the
primes, p must be equal to one of them, so p is a divisor of their
product. So we have that p divides p1p2p3 . . . pk , and p divides q, but
that means p divides their difference, which is 1. Therefore p ≤ 1.
Contradiction. Therefore there are infinitely many primes.
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The Sieve of Eratosthenes

How to find all primes between 2 and n?

A very inefficient method of determining if a number n is prime
Try every integer i ≤

√
n and see if n is divisible by i

1 Write the numbers 2, . . . , n into a list. Let i := 2
2 Remove all strict multiples of i from the list
3 Let k be the smallest number present in the list s.t. k > i and let

i := k
4 If i >

√
n then stop else go to step 2

Testing if a number is prime can be done efficiently in polynomial time
[Agrawal-Kayal-Saxena 2002], i.e., polynomial in the number of bits
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Greatest common divisor

Definition
Let a, b ∈ Z+.The largest integer d such that d |a and d |b is called the
greatest common divisor of a and b, written gcd(a, b)

gcd(24, 36) = 12

Definition
The integers a and b are relatively prime (coprime) iff gcd(a, b) = 1

9 and 22 are coprime (both are composite)
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Gcd by prime factorisations

Suppose that the prime factorisations of a and b are

a = pa1
1 pa2

2 · · · p
an
n b = pb1

1 pb2
2 · · · p

bn
n

where each exponent is a nonnegative integer (possibly zero)

gcd(a, b) = pmin(a1,b1)
1 pmin(a2,b2)

2 · · · pmin(an,bn)
n

This number clearly divides a and b. No larger number can divide both
a and b. Proof by contradiction and the prime factorisation of a
postulated larger divisor.

Factorisation is a very inefficient method to compute gcd
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Euclidian algorithm: efficient for computing gcd

Euclidian algorithm

algorithm gcd(x,y)
if y = 0
then return(x)
else return(gcd(y,x mod y))

The Euclidian algorithm relies on

∀x , y ∈ Z (x > y → gcd(x , y) = gcd(y , x mod y))
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Euclidian algorithm (proof of correctness)

Lemma
If a = bq + r , where a, b, q, and r are positive integers, then
gcd(a, b) = gcd(b, r)

Proof.
(⇒) Suppose that d divides both a and b. Then d also divides
a− bq = r . Hence, any common divisor of a and b must also be a
common divisor of b and r
(⇐) Suppose that d divides both b and r . Then d also divides
bq + r = a. Hence, any common divisor of b and r must also be a
common divisor of a and b.
Therefore, gcd(a, b) = gcd(b, r)
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Gcd as a linear combination

Theorem (Bézout’s theorem)
If x and y are positive integers, then there exist integers a and b such
that gcd(x , y) = ax + by

Proof.
Let S be the set of positive integers of the form ax + by (where a or b
may be a negative integer); clearly, S is non-empty as it includes x + y .
By the well-ordering principle S has a least element c. So c = ax + by
for some a and b. If d |x and d |y then d |ax and d |by and so
d |(ax + by), that is d |c. We now show c|x and c|y which means that
c = gcd(x , y). Assume c 6 | x . So x = qc + r where 0 < r < c. Now
r = x − qc = x − q(ax + by). That is, r = (1− qa)x + (−qb)y , so
r ∈ S which contradicts that c is the least element in S as r < c. The
same argument shows c|y .
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Computing Bézout coefficients

2 = gcd(6, 14) = (−2) · 6 + 1 · 14

Extended Euclidian algorithm (NOT EXAMINABLE)

algorithm extended-gcd(x,y)
if y = 0
then return(x, 1, 0)
else
(d, a, b) := extended-gcd(y, x mod y)
return((d, b, a - ((x div y) * b)))
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Further properties
Theorem
If a, b, c are positive integers such that gcd(a, b) = 1 and a|bc then a|c

Proof.
Because gcd(a, b) = 1, by Bézout’s theorem there are integers s and t
such that sa + tb = 1. So, sac + tbc = c. Assume a|bc. Therefore,
a|tbc and a|sac, so a|(sac + tbc); that is, a|c.

Theorem
Let m be a positive integer and let a, b, c be integers. If
ac ≡ bc (mod m) and gcd(c, m) = 1 then a ≡ b (mod m)

Proof.
Because ac ≡ bc (mod m), it follows m|(ac − bc); so, m|c(a− b). By
the result above because gcd(c, m) = 1, it follows that m|(a− b).
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