Discrete Mathematics & Mathematical Reasoning Arithmetic Modulo *m*, Primes and Greatest Common Divisors

Colin Stirling

Informatics

(4) The (b)

Definition

If *a* and *b* are integers with $a \neq 0$, then *a* divides *b*, written a|b, if there exists an integer *c* such that b = ac.

b is a multiple of a and a is a factor of b

A (10) A (10) A (10)

Definition

If *a* and *b* are integers with $a \neq 0$, then *a* divides *b*, written a|b, if there exists an integer *c* such that b = ac.

b is a multiple of *a* and *a* is a factor of *b*

 $3 \mid (-12)$ $3 \mid 0$ $3 \not\mid 7$ (where $\not\mid$ "not divides")

A (10) A (10)

Definition

If *a* and *b* are integers with $a \neq 0$, then *a* divides *b*, written a|b, if there exists an integer *c* such that b = ac.

b is a multiple of *a* and *a* is a factor of *b*

3 | (-12) 3 | 0 3 $\cancel{7}$ (where $\cancel{1}$ "not divides")

Theorem

- If a|b and a|c, then a|(b+c)
- If a|b, then a|bc
- If a|b and b|c, then a|c

A (B) + A (B) + A (B) +

Definition

If *a* and *b* are integers with $a \neq 0$, then *a* divides *b*, written a|b, if there exists an integer *c* such that b = ac.

b is a multiple of a and a is a factor of b

 $3 \mid (-12)$ $3 \mid 0$ $3 \not\mid 7$ (where $\not\mid$ "not divides")

Theorem

- If a|b and a|c, then a|(b+c)
- If a|b, then a|bc
- If a|b and b|c, then a|c

Proof.

We just prove the first; the others are similar. Assume a|b and a|c. So, there exists integers d, e such that b = da and c = ea. So b + c = da + ea = (d + e)a and, therefore, a|(b + c).

Theorem

If a is an integer and d a positive integer, then there are unique integers q and r, with $0 \le r < d$, such that a = dq + r

< D > < P > < B > < B > < B</p>

Theorem

If a is an integer and d a positive integer, then there are unique integers q and r, with $0 \le r < d$, such that a = dq + r

q is quotient and r the remainder; $q = a \operatorname{div} d$ and $r = a \operatorname{mod} d$

Theorem

If a is an integer and d a positive integer, then there are unique integers q and r, with $0 \le r < d$, such that a = dq + r

q is quotient and r the remainder; $q = a \operatorname{div} d$ and $r = a \operatorname{mod} d$

a = 102 and d = 12 q = 8 and r = 6 $102 = 12 \cdot 8 + 6$

Theorem

If a is an integer and d a positive integer, then there are unique integers q and r, with $0 \le r < d$, such that a = dq + r

q is quotient and r the remainder; $q = a \operatorname{div} d$ and $r = a \operatorname{mod} d$

a = 102 and d = 12 q = 8 and r = 6 $102 = 12 \cdot 8 + 6$ a = -14 and d = 6 q = -3 and r = 4 $-14 = 6 \cdot (-3) + 4$

く 戸 と く ヨ と く ヨ と

Theorem

If a is an integer and d a positive integer, then there are unique integers q and r, with $0 \le r < d$, such that a = dq + r

q is quotient and r the remainder; $q = a \operatorname{div} d$ and $r = a \operatorname{mod} d$

a = 102 and d = 12 q = 8 and r = 6 $102 = 12 \cdot 8 + 6$ a = -14 and d = 6 q = -3 and r = 4 $-14 = 6 \cdot (-3) + 4$

Proof.

Let *q* be the largest integer such that $dq \le a$; then r = a - dq and so, a = dq + r for $0 \le r < d$: if $r \ge d$ then $d(q + 1) \le a$ which contradicts that *q* is largest. So, there is at least one such *q* and *r*. Assume that there is more than one: $a = dq_1 + r_1$, $a = dq_2 + r_2$, and $(q_1, r_1) \ne (q_2, r_2)$. If $q_1 = q_2$ then $r_1 = a - dq_1 = a - dq_2 = r_2$. Assume $q_1 \ne q_2$; now we obtain a contradiction; as $dq_1 + r_1 = dq_2 + r_2$, $d = (r_1 - r_2)/(q_2 - q_1)$ which is impossible because $r_1 - r_2 < d$.

Definition

If *a* and *b* are integers and *m* is a positive integer, then *a* is congruent to *b* modulo *m*, written $a \equiv b \pmod{m}$, iff m|(a - b)

• $17 \equiv 5 \pmod{6}$ because 6 divides 17 - 5 = 12

A > + = + + =

Definition

If *a* and *b* are integers and *m* is a positive integer, then *a* is congruent to *b* modulo *m*, written $a \equiv b \pmod{m}$, iff m|(a - b)

- $17 \equiv 5 \pmod{6}$ because 6 divides 17 5 = 12
- $-17 \not\equiv 5 \pmod{6}$ because 6 $\not\mid (-22)$

< 回 ト < 三 ト < 三

Definition

If *a* and *b* are integers and *m* is a positive integer, then *a* is congruent to *b* modulo *m*, written $a \equiv b \pmod{m}$, iff m|(a - b)

- $17 \equiv 5 \pmod{6}$ because 6 divides 17 5 = 12
- $-17 \neq 5 \pmod{6}$ because 6 $\cancel{(-22)}$
- $-17 \equiv 1 \pmod{6}$

< 回 > < 回 > < 回 >

Definition

If *a* and *b* are integers and *m* is a positive integer, then *a* is congruent to *b* modulo *m*, written $a \equiv b \pmod{m}$, iff m|(a - b)

- $17 \equiv 5 \pmod{6}$ because 6 divides 17 5 = 12
- $-17 \neq 5 \pmod{6}$ because 6 $\cancel{(-22)}$
- $-17 \equiv 1 \pmod{6}$
- $24 \neq 14 \pmod{6}$ because 6 $\cancel{10}$

Congruence is an equivalence relation

Theorem

 $a \equiv b \pmod{m}$ iff $a \mod m = b \mod m$

A (10) > A (10) > A (10)

Congruence is an equivalence relation

Theorem

 $a \equiv b \pmod{m}$ iff $a \mod m = b \mod m$

Proof.

Assume $a \equiv b \pmod{m}$; so m | (a - b). If $a = q_1 m + r_1$ and $b = q_2 m + r_2$ where $0 \le r_1 < m$ and $0 \le r_2 < m$ it follows that $r_1 = r_2$ and so $a \mod m = b \mod m$. If $a \mod m = b \mod m$ then a and b have the same remainder so $a = q_1 m + r$ and $b = q_2 m + r$; therefore $a - b = (q_1 - q_2)m$, and so m | (a - b).

Congruence is an equivalence relation

Theorem

 $a \equiv b \pmod{m}$ iff a mod $m = b \mod{m}$

Proof.

Assume $a \equiv b \pmod{m}$; so m | (a - b). If $a = q_1 m + r_1$ and $b = q_2 m + r_2$ where $0 \le r_1 < m$ and $0 \le r_2 < m$ it follows that $r_1 = r_2$ and so $a \mod m = b \mod m$. If $a \mod m = b \mod m$ then a and b have the same remainder so $a = q_1 m + r$ and $b = q_2 m + r$; therefore $a - b = (q_1 - q_2)m$, and so m | (a - b).

• \equiv (mod *m*) is an equivalence relation on integers

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A simple theorem of congruence

Theorem

 $a \equiv b \pmod{m}$ iff there is an integer k such that a = b + km

A (10) > A (10) > A (10)

A simple theorem of congruence

Theorem

 $a \equiv b \pmod{m}$ iff there is an integer k such that a = b + km

Proof.

If $a \equiv b \pmod{m}$, then by the definition of congruence m | (a - b). Hence, there is an integer *k* such that a - b = km and equivalently a = b + km. If there is an integer *k* such that a = b + km, then km = a - b. Hence, m | (a - b) and $a \equiv b \pmod{m}$.

< 回 > < 三 > < 三 >

Congruences of sums, differences, and products

Theorem

If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$

< 🗇 🕨 < 🖻 > <

Congruences of sums, differences, and products

Theorem

If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$

Proof.

Since $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, by the previous theorem, there are integers *s* and *t* with b = a + sm and d = c + tm. Therefore, b + d = (a + sm) + (c + tm) = (a + c) + m(s + t), and bd = (a + sm)(c + tm) = ac + m(at + cs + stm). Hence, $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$

(二回) (二回) (二回)

Congruences of sums, differences, and products

Theorem

If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$

Proof.

Since $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, by the previous theorem, there are integers *s* and *t* with b = a + sm and d = c + tm. Therefore, b + d = (a + sm) + (c + tm) = (a + c) + m(s + t), and bd = (a + sm)(c + tm) = ac + m(at + cs + stm). Hence, $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$

Corollary

- $(a+b) \mod m = ((a \mod m) + (b \mod m)) \mod m$
- *ab mod m* = ((*a mod m*)(*b mod m*)) *mod m*

•
$$\mathbb{Z}_m = \{0, 1, \dots, m-1\}$$

- $\mathbb{Z}_m = \{0, 1, \dots, m-1\}$
- $+_m$ on \mathbb{Z}_m is $a +_m b = (a + b) \mod m$

イロト イヨト イヨト イヨト

- $\mathbb{Z}_m = \{0, 1, \dots, m-1\}$
- $+_m$ on \mathbb{Z}_m is $a +_m b = (a + b) \mod m$
- \cdot_m on \mathbb{Z}_m is define $a \cdot_m b = (a \cdot b) \mod m$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- $\mathbb{Z}_m = \{0, 1, \dots, m-1\}$
- $+_m$ on \mathbb{Z}_m is $a +_m b = (a + b) \mod m$
- \cdot_m on \mathbb{Z}_m is define $a \cdot_m b = (a \cdot b) \mod m$
- Find $7 +_{11} 9$ and $-7 \cdot_{11} 9$

- $\mathbb{Z}_m = \{0, 1, \dots, m-1\}$
- $+_m$ on \mathbb{Z}_m is $a +_m b = (a + b) \mod m$
- \cdot_m on \mathbb{Z}_m is define $a \cdot_m b = (a \cdot b) \mod m$
- Find $7 +_{11} 9$ and $-7 \cdot_{11} 9$
- $7 +_{11} 9 = (7 + 9) \mod 11 = 16 \mod 11 = 5$

- $\mathbb{Z}_m = \{0, 1, \dots, m-1\}$
- $+_m$ on \mathbb{Z}_m is $a +_m b = (a + b) \mod m$
- \cdot_m on \mathbb{Z}_m is define $a \cdot_m b = (a \cdot b) \mod m$
- Find $7 +_{11} 9$ and $-7 \cdot_{11} 9$
- $7 +_{11} 9 = (7 + 9) \mod 11 = 16 \mod 11 = 5$
- $-7 \cdot_{11} 9 = (-7 \cdot 9) \mod 11 = -63 \mod 11 = 3$

Primes

Definition

A positive integer p > 1 is called prime iff the only positive factors of p are 1 and p. Otherwise it is called composite

A (10) > A (10) > A (10)

Primes

Definition

A positive integer p > 1 is called prime iff the only positive factors of p are 1 and p. Otherwise it is called composite

Theorem (Fundamental Theorem of Arithmetic)

Every positive integer greater than 1 can be written uniquely as a prime or as the product of its prime factors, written in order of nondecreasing size

不同 トイモトイモ

Primes

Definition

A positive integer p > 1 is called prime iff the only positive factors of p are 1 and p. Otherwise it is called composite

Theorem (Fundamental Theorem of Arithmetic)

Every positive integer greater than 1 can be written uniquely as a prime or as the product of its prime factors, written in order of nondecreasing size

 $765 = 3 \cdot 3 \cdot 5 \cdot 17 = 3^2 \cdot 5 \cdot 17$

Theorem (Fundamental Theorem of Arithmetic)

Every positive integer greater than 1 can be written uniquely as a prime or as the product of its prime factors, written in order of nondecreasing size

Theorem (Fundamental Theorem of Arithmetic)

Every positive integer greater than 1 can be written uniquely as a prime or as the product of its prime factors, written in order of nondecreasing size

Showed by induction if n > 1 is an integer then n can be written as a product of primes

Theorem (Fundamental Theorem of Arithmetic)

Every positive integer greater than 1 can be written uniquely as a prime or as the product of its prime factors, written in order of nondecreasing size

Showed by induction if n > 1 is an integer then *n* can be written as a product of primes

Missing is uniqueness

Theorem (Fundamental Theorem of Arithmetic)

Every positive integer greater than 1 can be written uniquely as a prime or as the product of its prime factors, written in order of nondecreasing size

Showed by induction if n > 1 is an integer then *n* can be written as a product of primes

Missing is uniqueness

Lemma if *p* is prime and $p|a_1a_2...a_n$ where each a_i is an integer, then $p|a_j$ for some $1 \le j \le n$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Fundamental Theorem of Arithmetic)

Every positive integer greater than 1 can be written uniquely as a prime or as the product of its prime factors, written in order of nondecreasing size

Showed by induction if n > 1 is an integer then n can be written as a product of primes

Missing is uniqueness

Lemma if *p* is prime and $p|a_1a_2...a_n$ where each a_i is an integer, then $p|a_j$ for some $1 \le j \le n$

By induction too

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Fundamental Theorem of Arithmetic)

Every positive integer greater than 1 can be written uniquely as a prime or as the product of its prime factors, written in order of nondecreasing size

Showed by induction if n > 1 is an integer then n can be written as a product of primes

Missing is uniqueness

Lemma if *p* is prime and $p|a_1a_2...a_n$ where each a_i is an integer, then $p|a_j$ for some $1 \le j \le n$

By induction too

Now result follows

A (10) A (10)

Colin Stirling (Informatics)

Discrete Mathematics (Chap 4)

Today 11 / 19

• • • • • • • • • • • • •

Lemma Every natural number greater than one is either prime or it has a prime divisor

4 D K 4 B K 4 B K 4

Lemma Every natural number greater than one is either prime or it has a prime divisor

Follows from fundamental theorem

Lemma Every natural number greater than one is either prime or it has a prime divisor

Follows from fundamental theorem

Proof Suppose towards a contradiction that there are only finitely many primes $p_1, p_2, p_3, \ldots, p_k$. Consider the number $q = p_1 p_2 p_3 \ldots p_k + 1$, the product of all the primes plus one. By hypothesis *q* cannot be prime because it is strictly larger than all the primes. Thus, by the lemma, it has a prime divisor, *p*. Because $p_1, p_2, p_3, \ldots, p_k$ are all the primes, *p* must be equal to one of them, so p is a divisor of their product. So we have that *p* divides $p_1 p_2 p_3 \ldots p_k$, and *p* divides *q*, but that means *p* divides their difference, which is 1. Therefore $p \le 1$. Contradiction. Therefore there are infinitely many primes.

How to find all primes between 2 and n?

How to find all primes between 2 and n?

A very inefficient method of determining if a number *n* is prime

Try every integer $i \le \sqrt{n}$ and see if *n* is divisible by *i*

• Write the numbers $2, \ldots, n$ into a list. Let i := 2

How to find all primes between 2 and n?

A very inefficient method of determining if a number *n* is prime

Try every integer $i \le \sqrt{n}$ and see if *n* is divisible by *i*

- Write the numbers $2, \ldots, n$ into a list. Let i := 2
- Remove all strict multiples of *i* from the list

How to find all primes between 2 and n?

A very inefficient method of determining if a number *n* is prime

Try every integer $i \le \sqrt{n}$ and see if *n* is divisible by *i*

- Write the numbers $2, \ldots, n$ into a list. Let i := 2
- Remove all strict multiples of *i* from the list
- Let k be the smallest number present in the list s.t. k > i and let i := k

How to find all primes between 2 and n?

A very inefficient method of determining if a number *n* is prime

Try every integer $i \le \sqrt{n}$ and see if *n* is divisible by *i*

- Write the numbers $2, \ldots, n$ into a list. Let i := 2
- Remove all strict multiples of *i* from the list
- 3 Let k be the smallest number present in the list s.t. k > i and let i := k
- If $i > \sqrt{n}$ then stop else go to step 2

How to find all primes between 2 and n?

A very inefficient method of determining if a number *n* is prime

Try every integer $i \le \sqrt{n}$ and see if *n* is divisible by *i*

- Write the numbers $2, \ldots, n$ into a list. Let i := 2
- Remove all strict multiples of *i* from the list
- Let k be the smallest number present in the list s.t. k > i and let i := k
- If $i > \sqrt{n}$ then stop else go to step 2

Testing if a number is prime can be done efficiently in polynomial time [Agrawal-Kayal-Saxena 2002], i.e., polynomial in the number of bits used to describe the input number. Efficient randomized tests had been available previously.

Definition

Let $a, b \in \mathbb{Z}^+$. The largest integer d such that d|a and d|b is called the greatest common divisor of a and b, written gcd(a, b)

Definition

Let $a, b \in \mathbb{Z}^+$. The largest integer d such that d|a and d|b is called the greatest common divisor of a and b, written gcd(a, b)

gcd(24, 36) = 12

A D A D A D A

Definition

Let $a, b \in \mathbb{Z}^+$. The largest integer d such that d|a and d|b is called the greatest common divisor of a and b, written gcd(a, b)

gcd(24, 36) = 12

Definition

The integers *a* and *b* are relatively prime (coprime) iff gcd(a, b) = 1

A (10) A (10)

Definition

Let $a, b \in \mathbb{Z}^+$. The largest integer d such that d|a and d|b is called the greatest common divisor of a and b, written gcd(a, b)

gcd(24, 36) = 12

Definition

The integers *a* and *b* are relatively prime (coprime) iff gcd(a, b) = 1

9 and 22 are coprime (both are composite)

A (10) A (10)

Suppose that the prime factorisations of a and b are

$$a = p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n}$$
 $b = p_1^{b_1} p_2^{b_2} \cdots p_n^{b_n}$

where each exponent is a nonnegative integer (possibly zero)

Suppose that the prime factorisations of a and b are

$$a = p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n}$$
 $b = p_1^{b_1} p_2^{b_2} \cdots p_n^{b_n}$

where each exponent is a nonnegative integer (possibly zero)

$$gcd(a, b) = p_1^{\min(a_1, b_1)} p_2^{\min(a_2, b_2)} \cdots p_n^{\min(a_n, b_n)}$$

Suppose that the prime factorisations of a and b are

$$a = p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n}$$
 $b = p_1^{b_1} p_2^{b_2} \cdots p_n^{b_n}$

where each exponent is a nonnegative integer (possibly zero)

$$gcd(a, b) = p_1^{\min(a_1, b_1)} p_2^{\min(a_2, b_2)} \cdots p_n^{\min(a_n, b_n)}$$

This number clearly divides *a* and *b*. No larger number can divide both *a* and *b*. Proof by contradiction and the prime factorisation of a postulated larger divisor.

Suppose that the prime factorisations of *a* and *b* are

$$a = p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n}$$
 $b = p_1^{b_1} p_2^{b_2} \cdots p_n^{b_n}$

where each exponent is a nonnegative integer (possibly zero)

$$gcd(a, b) = p_1^{\min(a_1, b_1)} p_2^{\min(a_2, b_2)} \cdots p_n^{\min(a_n, b_n)}$$

This number clearly divides *a* and *b*. No larger number can divide both *a* and *b*. Proof by contradiction and the prime factorisation of a postulated larger divisor.

Factorisation is a very inefficient method to compute gcd

Euclidian algorithm: efficient for computing gcd

Euclidian algorithm

```
algorithm gcd(x,y)
if y = 0
then return(x)
else return(gcd(y, x mod y))
```

< 🗇 > < 🖻 > <

-

Euclidian algorithm: efficient for computing gcd

Euclidian algorithm

```
algorithm gcd(x,y)
if y = 0
then return(x)
else return(gcd(y, x mod y))
```

The Euclidian algorithm relies on

 $\forall x,y \in \mathbb{Z} \ (x > y \rightarrow \gcd(x,y) = \gcd(y,x \bmod y))$

A (B) + A (B) + A (B) +

Euclidian algorithm (proof of correctness)

Lemma

If a = bq + r, where a, b, q, and r are positive integers, then gcd(a, b) = gcd(b, r)

A (10) A (10) A (10)

Euclidian algorithm (proof of correctness)

Lemma

If a = bq + r, where a, b, q, and r are positive integers, then gcd(a, b) = gcd(b, r)

Proof.

(⇒) Suppose that *d* divides both *a* and *b*. Then *d* also divides a - bq = r. Hence, any common divisor of *a* and *b* must also be a common divisor of *b* and *r* (⇐) Suppose that *d* divides both *b* and *r*. Then *d* also divides bq + r = a. Hence, any common divisor of *b* and *r* must also be a common divisor of *a* and *b*.

Therefore, gcd(a, b) = gcd(b, r)

Gcd as a linear combination

Theorem (Bézout's theorem)

If x and y are positive integers, then there exist integers a and b such that gcd(x, y) = ax + by

Gcd as a linear combination

Theorem (Bézout's theorem)

If x and y are positive integers, then there exist integers a and b such that gcd(x, y) = ax + by

Proof.

Let *S* be the set of positive integers of the form ax + by (where *a* or *b* may be a negative integer); clearly, *S* is non-empty as it includes x + y. By the well-ordering principle *S* has a least element *c*. So c = ax + by for some *a* and *b*. If d|x and d|y then d|ax and d|by and so d|(ax + by), that is d|c. We now show c|x and c|y which means that $c = \gcd(x, y)$. Assume $c \not|x$. So x = qc + r where 0 < r < c. Now r = x - qc = x - q(ax + by). That is, r = (1 - qa)x + (-qb)y, so $r \in S$ which contradicts that *c* is the least element in *S* as r < c. The same argument shows c|y.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Computing Bézout coefficients

 $2 = gcd(6, 14) = (-2) \cdot 6 + 1 \cdot 14$

イロト イヨト イヨト イヨト

Computing Bézout coefficients

 $2 = gcd(6, 14) = (-2) \cdot 6 + 1 \cdot 14$

Extended Euclidian algorithm (NOT EXAMINABLE)

```
algorithm extended-gcd(x,y)
if y = 0
then return(x, 1, 0)
else
(d, a, b) := extended-gcd(y, x mod y)
return((d, b, a - ((x div y) * b)))
```

Theorem

If a, b, c are positive integers such that gcd(a, b) = 1 and a|bc then a|c

• • • • • • • • • • • • •

Theorem

If a, b, c are positive integers such that gcd(a, b) = 1 and a|bc then a|c

Proof.

Because gcd(a, b) = 1, by Bézout's theorem there are integers *s* and *t* such that sa + tb = 1. So, sac + tbc = c. Assume a|bc. Therefore, a|tbc and a|sac, so a|(sac + tbc); that is, a|c.

Theorem

If a, b, c are positive integers such that gcd(a, b) = 1 and a|bc then a|c

Proof.

Because gcd(a, b) = 1, by Bézout's theorem there are integers *s* and *t* such that sa + tb = 1. So, sac + tbc = c. Assume a|bc. Therefore, a|tbc and a|sac, so a|(sac + tbc); that is, a|c.

Theorem

Let *m* be a positive integer and let *a*, *b*, *c* be integers. If $ac \equiv bc \pmod{m}$ and gcd(c, m) = 1 then $a \equiv b \pmod{m}$

A (10) A (10)

Theorem

If a, b, c are positive integers such that gcd(a, b) = 1 and a|bc then a|c

Proof.

Because gcd(a, b) = 1, by Bézout's theorem there are integers *s* and *t* such that sa + tb = 1. So, sac + tbc = c. Assume a|bc. Therefore, a|tbc and a|sac, so a|(sac + tbc); that is, a|c.

Theorem

Let *m* be a positive integer and let *a*, *b*, *c* be integers. If $ac \equiv bc \pmod{m}$ and gcd(c, m) = 1 then $a \equiv b \pmod{m}$

Proof.

Because $ac \equiv bc \pmod{m}$, it follows m|(ac - bc); so, m|c(a - b). By the result above because gcd(c, m) = 1, it follows that m|(a - b).