
Discrete Mathematics & Mathematical
Reasoning

Chapter 11: Trees

Kousha Etessami

U. of Edinburgh, UK

Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 11) 1 / 13

A tree is a connected simple undirected graph with no simple
circuits.
A forest is a (not necessarily connected) simple undirected
graph with no simple circuits.

Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 11) 2 / 13

Some important facts about trees

Theorem 1: A graph G is a tree if and only if there is a unique
simple (and tidy) path between any two vertices of G.

Proof: On the board. (Next slide provides written proof.)

Theorem 2: Every tree, T = (V , E) with |V | ≥ 2, has at least
two vertices that have degree = 1.

Proof: Take any longest simple path x0 . . . xm in T . Both x0 and
xm must have degree 1: otherwise there’s a longer path in T .

Theorem 3: Every tree with n vertices has exactly n − 1 edges.

Proof: On the board. By induction on n.

Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 11) 3 / 13

Proof of Theorem 1 about Trees
Suppose there are two distinct simple paths between vertices
u, v ∈ V : x0x1x2 . . . xn and y0y1y2 . . . ym.
Firstly, there must be some i ≥ 1, such that ∀0 ≤ k < i , xk = yk ,
but such that xi 6= yi . (Why is this so?)
Furthermore, there must be a smallest j ≥ i , such that either xj

appears in yi , . . . , ym, or such that yj appears in xi . . . xn.
Suppose, without loss of generality, that this holds for some
smallest j ≥ i and xj . Then xj = yr , for some smallest r ≥ i .
We claim that then the path xi−1xi . . . xjyr−1yr−2 . . . yiyi−1 must
form a simple circuit, which contradicts the fact that G is a tree.
Note that by assumption xi−1 = yi−1, so this is a circuit.
Furthermore, it is simple, because its edges are a disjoint union
of edges from the x and y paths, because by construction none
of the vertices xi , . . . , xj occur in yi . . . yr−1, and xi 6= yi .

Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 11) 4 / 13

Rooted Trees
A rooted tree, is a pair (T , r) where T = (V , E) is a tree, and
r ∈ V is a chosen root vertex of the tree.
Often, the edges of a rooted tree (T,r) are viewed as being
directed, such that for every vertex v the unique path from r to v
is directed away from (or towards) r .

(In CS, rooted trees are typically drawn with root at the top.)

Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 11) 5 / 13

Terminology for rooted trees r

a b

c d

e
For a rooted tree (T , r), with root r ,

For each node v 6= r the parent,
is the unique vertex u such that
(u, v) ∈ E . v is then called a child of u.
Two vertices with the same parent are called siblings.
A leaf is a vertex with no children. Non-leaves are called
internal vertices.
The height of a rooted tree is the length of the longest
directed path from the root to any leaf.
The ancestors (descendants, respectively) of a vertex v
are all vertices u 6= v such that there is a directed path from
u to v (from v to u, respectively).
The subtree rooted at v , is the subgraph containing v and
all its descendants, and all directed edges between them.

Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 11) 6 / 13

m-ary Trees

For m ≥ 1, A rooted tree is called a m-ary tree if every internal
node has at most m children.
It is called a full m-ary tree if every internal node has exactly m
children.
An m-ary tree with m = 2 is called a binary tree.

Which one of these rooted trees is a (full) m-ary tree?

Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 11) 7 / 13

A rooted ordered tree is a rooted tree (T , r) where in addition
the children of each internal vertex v are linearly ordered
according to some ordering ≤v .
When drawing the tree, we usually write ordered children (from
least to greatest) from left to right.
If the rooted ordered tree is a binary tree, then the first child is
called left child and the second child is called right child.

r

a b

c d

Note: rooted ordered trees are VERY COMMON in computer
science applications: parse trees, XML documents, file
directories, “decision trees”, “game trees”,

Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 11) 8 / 13

Counting vertices in m-ary trees

Theorem C1: For all m ≥ 1, every full m-ary tree with i internal
vertices has exactly n = m · i + 1 vertices.

Proof: Every vertex other than the root is a child of an internal
vertex. There are thus m · i such children, plus 1 root.

Theorem C2: For all m ≥ 1, a full m-ary tree with:

1. n vertices has i = (n − 1)/m internal vertices and
l = [(m − 1)n + 1]/m leaves.

2. i internal vertices has n = m · i + 1 vertices and
l = (m − 1)i + 1 leaves.

3. if m ≥ 2, then if the m-ary tree has l leaves then it has
n = (ml − 1)/(m − 1) vertices and i = (l − 1)/(m − 1)
internal vertices.

Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 11) 9 / 13

More counting for m-ary trees

Theorem C3: There are at most mh leaves in an m-ary tree of
height h.

Proof: By induction on h ≥ 0.

Theorem C4: If an m-ary tree has l leaves, and h is its height,
then h ≥ dlogm le.

Proof: Since l ≤ mh, we have logm l ≤ h. But h in a
non-negative integer, so dlogm le ≤ h.

Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 11) 10 / 13

Application: bounds for comparison-based sorting

Question: You have to sort a list of distinct unknown numbers:
a1, . . . , an, using only the operation of comparing two numbers:

ai
?
< aj . How many comparisons do you need, in the worst case,

in order to sort all the numbers correctly?

Answer: Consider a binary decision tree, modeling the
comparisons you make. There are n! permutations of a1, . . . , an,
so there are n! possible fully sorted orderings. These constitute
the leaves of your decision tree.
Since the decision tree is binary (2-ary), by Theorem C4 the
height of the tree is h ≥ log2 n!. But note that the height is the
worst-case number of comparisons.
By Stirling’s formula, h ≥ log2

(
n
e

)n
= Ω(n log2 n).

Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 11) 11 / 13

Application: bounds for comparison-based sorting

Question: You have to sort a list of distinct unknown numbers:
a1, . . . , an, using only the operation of comparing two numbers:

ai
?
< aj . How many comparisons do you need, in the worst case,

in order to sort all the numbers correctly?

Answer: Consider a binary decision tree, modeling the
comparisons you make. There are n! permutations of a1, . . . , an,
so there are n! possible fully sorted orderings. These constitute
the leaves of your decision tree.
Since the decision tree is binary (2-ary), by Theorem C4 the
height of the tree is h ≥ log2 n!. But note that the height is the
worst-case number of comparisons.
By Stirling’s formula, h ≥ log2

(
n
e

)n
= Ω(n log2 n).

Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 11) 11 / 13

Spanning Trees of undirected graphs
For a simple undirected graph G, a spanning tree of G is a
subgraph T of G such that T is a tree and T contains every
vertex of G.

Theorem: Every connected graph G has a spanning tree.

Proof: While there is a circuit in G, remove one edge of the
circuit. Repeat. Removing one edge of the circuit does not
change connectivity, and eventually no circuits can remain
(because there are only finitely many edges to be removed). So,
the end result is a tree which is a subtree of G.

Question: Given a graph G, can we efficiently compute a
spanning tree for G?
Answer: Yes. Even for edge-weighted graphs, we can compute
a minimum-cost spanning tree efficiently. (The cost of a
spanning tree is the sum of its edge costs.)

Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 11) 12 / 13

Spanning Trees of undirected graphs
For a simple undirected graph G, a spanning tree of G is a
subgraph T of G such that T is a tree and T contains every
vertex of G.

Theorem: Every connected graph G has a spanning tree.

Proof: While there is a circuit in G, remove one edge of the
circuit. Repeat. Removing one edge of the circuit does not
change connectivity, and eventually no circuits can remain
(because there are only finitely many edges to be removed). So,
the end result is a tree which is a subtree of G.
Question: Given a graph G, can we efficiently compute a
spanning tree for G?

Answer: Yes. Even for edge-weighted graphs, we can compute
a minimum-cost spanning tree efficiently. (The cost of a
spanning tree is the sum of its edge costs.)

Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 11) 12 / 13

Spanning Trees of undirected graphs
For a simple undirected graph G, a spanning tree of G is a
subgraph T of G such that T is a tree and T contains every
vertex of G.

Theorem: Every connected graph G has a spanning tree.

Proof: While there is a circuit in G, remove one edge of the
circuit. Repeat. Removing one edge of the circuit does not
change connectivity, and eventually no circuits can remain
(because there are only finitely many edges to be removed). So,
the end result is a tree which is a subtree of G.
Question: Given a graph G, can we efficiently compute a
spanning tree for G?
Answer: Yes. Even for edge-weighted graphs, we can compute
a minimum-cost spanning tree efficiently. (The cost of a
spanning tree is the sum of its edge costs.)

Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 11) 12 / 13

Prim’s algorithm for a minimum spanning tree

Input: Connected, edge-weighted, undirected graph
G = (V , E , w).

Output: A minimum-cost spanning tree T for G.

Algorithm:
Initialize: T := {e}, where e is a minimum-weight edge in E .
for i := 1 to n − 2 do

Let e′ := a minimum-weight edge incident to
some vertex in T , and not forming a circuit
if added to T ;

T := T ∪ {e′};
end for
Output the tree T .

Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 11) 13 / 13

