Discrete Mathematics & Mathematical Reasoning Cardinality

Colin Stirling

Informatics

Some slides based on ones by Myrto Arapinis and by Richard Mayr

Definition

• Two sets A and B have the same cardinality, |A| = |B|, iff there exists a bijection from A to B

Definition

- Two sets A and B have the same cardinality, |A| = |B|, iff there exists a bijection from A to B
- $|A| \le |B|$ iff there exists an injection from A to B

Definition

- Two sets A and B have the same cardinality, |A| = |B|, iff there exists a bijection from A to B
- $|A| \le |B|$ iff there exists an injection from A to B
- |A| < |B| iff $|A| \le |B|$ and $|A| \ne |B|$ (A smaller cardinality than B)

Definition

- Two sets A and B have the same cardinality, |A| = |B|, iff there exists a bijection from A to B
- $|A| \le |B|$ iff there exists an injection from A to B
- |A| < |B| iff $|A| \le |B|$ and $|A| \ne |B|$ (A smaller cardinality than B)

When A and B are finite |A| = |B| iff they have same size

Definition

- Two sets A and B have the same cardinality, |A| = |B|, iff there exists a bijection from A to B
- $|A| \le |B|$ iff there exists an injection from A to B
- |A| < |B| iff $|A| \le |B|$ and $|A| \ne |B|$ (A smaller cardinality than B)

When A and B are finite |A| = |B| iff they have same size

 \mathbb{N} and its subset Even = $\{2n \mid n \in \mathbb{N}\}$ have the same cardinality, because $f : \mathbb{N} \to \text{Even where } f(n) = 2n \text{ is a bijection}$

Countable Sets

Definition

• A set S is called countably infinite, iff it has the same cardinality as the natural numbers, $|S| = |\mathbb{N}|$

Countable Sets

Definition

- A set S is called countably infinite, iff it has the same cardinality as the natural numbers, $|S| = |\mathbb{N}|$
- A set is called countable iff it is either finite or countably infinite

Countable Sets

Definition

- A set S is called countably infinite, iff it has the same cardinality as the natural numbers, $|S| = |\mathbb{N}|$
- A set is called countable iff it is either finite or countably infinite
- A set that is not countable is called uncountable

Construct a bijection $f: \mathbb{N} \to \mathbb{Q}^+$

Construct a bijection $f: \mathbb{N} \to \mathbb{Q}^+$

List fractions p/q with q = n in the n^{th} row

Construct a bijection $f: \mathbb{N} \to \mathbb{Q}^+$

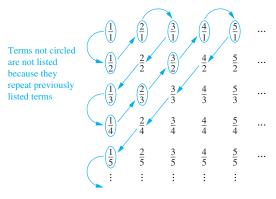
List fractions p/q with q = n in the n^{th} row

f traverses this list in the order for $m=2,3,4,\ldots$ visiting all p/q with p+q=m (and listing only new rationals)

Construct a bijection $f: \mathbb{N} \to \mathbb{Q}^+$

List fractions p/q with q = n in the n^{th} row

f traverses this list in the order for $m=2,3,4,\ldots$ visiting all p/q with p+q=m (and listing only new rationals)



Theorem

The set Σ^* of all finite strings over a finite alphabet Σ is countably infinite

Theorem

The set Σ^* of all finite strings over a finite alphabet Σ is countably infinite

Proof.

- First define an (alphabetical) ordering on the symbols in Σ
 Show that the strings can be listed in a sequence
 - First single string ε of length 0
 - Then all strings of length 1 in lexicographic order
 - Then all strings of length 2 in lexicographic order
 - etc

Theorem

The set Σ^* of all finite strings over a finite alphabet Σ is countably infinite

Proof.

- First define an (alphabetical) ordering on the symbols in Σ
 Show that the strings can be listed in a sequence
 - First single string ε of length 0
 - Then all strings of length 1 in lexicographic order
 - Then all strings of length 2 in lexicographic order
 - etc
- This implies a bijection from N to Σ*

Theorem

The set Σ^* of all finite strings over a finite alphabet Σ is countably infinite

Proof.

- First define an (alphabetical) ordering on the symbols in Σ Show that the strings can be listed in a sequence
 - First single string ε of length 0
 - Then all strings of length 1 in lexicographic order
 - Then all strings of length 2 in lexicographic order
 - etc
- This implies a bijection from N to Σ*

The set of Java-programs is countable; a program is just a finite string

Infinite binary strings

• An infinite length string of bits 10010...

Infinite binary strings

- An infinite length string of bits 10010...
- Such a string is a function $d : \mathbb{N} \to \{0, 1\}$

Infinite binary strings

- An infinite length string of bits 10010...
- Such a string is a function $d : \mathbb{N} \to \{0, 1\}$
- with the property $d_m = d(m)$ is the *m*th symbol (starting from 0)

Theorem

The set of infinite binary strings is uncountable

Theorem

The set of infinite binary strings is uncountable

Proof.

Let X be the set of infinite binary strings. For a contradiction assume that a bijection $f: \mathbb{N} \to X$ exists. So, f must be onto (surjective). Assume that $f(i) = d^i$ for $i \in \mathbb{N}$. So, $X = \{d^0, d^1, \dots, d^m, \dots\}$. Define the infinite binary string d as follows: $d_n = (d_n^n + 1) \mod 2$. But for each m, $d \neq d^m$ because $d_m \neq d_m^m$. So, f is not a surjection.

Theorem

The set of infinite binary strings is uncountable

Proof.

Let X be the set of infinite binary strings. For a contradiction assume that a bijection $f: \mathbb{N} \to X$ exists. So, f must be onto (surjective). Assume that $f(i) = d^i$ for $i \in \mathbb{N}$. So, $X = \{d^0, d^1, \dots, d^m, \dots\}$. Define the infinite binary string d as follows: $d_n = (d_n^n + 1) \mod 2$. But for each m, $d \neq d^m$ because $d_m \neq d_m^m$. So, f is not a surjection.

The technique used here is called diagonalization

Theorem

The set of infinite binary strings is uncountable

Proof.

Let X be the set of infinite binary strings. For a contradiction assume that a bijection $f: \mathbb{N} \to X$ exists. So, f must be onto (surjective). Assume that $f(i) = d^i$ for $i \in \mathbb{N}$. So, $X = \{d^0, d^1, \dots, d^m, \dots\}$. Define the infinite binary string d as follows: $d_n = (d_n^n + 1) \mod 2$. But for each m, $d \neq d^m$ because $d_m \neq d_m^m$. So, f is not a surjection.

The technique used here is called diagonalization

Theorem

The set of infinite binary strings is uncountable

Proof.

Let X be the set of infinite binary strings. For a contradiction assume that a bijection $f: \mathbb{N} \to X$ exists. So, f must be onto (surjective). Assume that $f(i) = d^i$ for $i \in \mathbb{N}$. So, $X = \{d^0, d^1, \dots, d^m, \dots\}$. Define the infinite binary string d as follows: $d_n = (d_n^n + 1) \mod 2$. But for each $m, d \neq d^m$ because $d_m \neq d_m^m$. So, f is not a surjection.

The technique used here is called diagonalization

Similar argument shows that \mathbb{R} via [0,1] is uncountable using infinite decimal strings (see book).

Theorem

The set of infinite binary strings is uncountable

Proof.

Let X be the set of infinite binary strings. For a contradiction assume that a bijection $f: \mathbb{N} \to X$ exists. So, f must be onto (surjective). Assume that $f(i) = d^i$ for $i \in \mathbb{N}$. So, $X = \{d^0, d^1, \dots, d^m, \dots\}$. Define the infinite binary string d as follows: $d_n = (d_n^n + 1) \mod 2$. But for each m, $d \neq d^m$ because $d_m \neq d_m^m$. So, f is not a surjection.

The technique used here is called diagonalization

Similar argument shows that \mathbb{R} via [0,1] is uncountable using infinite decimal strings (see book). "Most functions" are not computable!

Theorem

If $|A| \leq |B|$ and $|B| \leq |A|$ then |A| = |B|

Theorem

If
$$|A| \le |B|$$
 and $|B| \le |A|$ then $|A| = |B|$

• Example |(0,1)| = |(0,1]|

Theorem

If $|A| \le |B|$ and $|B| \le |A|$ then |A| = |B|

- Example |(0,1)| = |(0,1]|
- $|(0,1)| \le |(0,1]|$ using identity function

Theorem

If
$$|A| \le |B|$$
 and $|B| \le |A|$ then $|A| = |B|$

- Example |(0,1)| = |(0,1]|
- $|(0,1)| \le |(0,1]|$ using identity function
- $|(0,1]| \le |(0,1)|$ use f(x) = x/2 as $(0,1/2] \subset (0,1)$

Cantor's theorem

Theorem

 $|A| < |\mathcal{P}(A)|$

Cantor's theorem

Theorem

$$|A| < |\mathcal{P}(A)|$$

Proof.

Consider the injection $f: A \to \mathcal{P}(A)$ with $f(a) = \{a\}$ for any $a \in A$. Therefore, $|A| \le |\mathcal{P}(A)|$. Next we show there is not a surjection $f: A \to \mathcal{P}(A)$. For a contradiction, assume that a surjection f exists. We define the set $B \subseteq A$: $B = \{x \in A \mid x \notin f(x)\}$. Since f is a surjection, there must exist an $a \in A$ s.t. B = f(a). Now there are two cases:

- **1** If $a \in B$ then, by definition of B, $a \notin f(a) = B$. Contradiction
- ② If $a \notin B$ then $a \notin f(a)$. Thus, by definition of $B, a \in B$. Contradiction

• $\mathcal{P}(\mathbb{N})$ is not countable (in fact, $|\mathcal{P}(\mathbb{N})| = |\mathbb{R}|$)

- $\mathcal{P}(\mathbb{N})$ is not countable (in fact, $|\mathcal{P}(\mathbb{N})| = |\mathbb{R}|$)
- The Continuum Hypothesis claims there is no set S with $|\mathbb{N}|<|S|<|\mathbb{R}|$

- $\mathcal{P}(\mathbb{N})$ is not countable (in fact, $|\mathcal{P}(\mathbb{N})| = |\mathbb{R}|$)
- The Continuum Hypothesis claims there is no set S with $|\mathbb{N}|<|S|<|\mathbb{R}|$
- It was 1st of Hilbert's 23 open problems presented in 1900.
 Shown to be independent of ZF set theory by Gödel/Cohen in 1963: cannot be proven/disproven in ZF

- $\mathcal{P}(\mathbb{N})$ is not countable (in fact, $|\mathcal{P}(\mathbb{N})| = |\mathbb{R}|$)
- The Continuum Hypothesis claims there is no set ${\cal S}$ with $|\mathbb{N}|<|{\cal S}|<|\mathbb{R}|$
- It was 1st of Hilbert's 23 open problems presented in 1900.
 Shown to be independent of ZF set theory by Gödel/Cohen in 1963: cannot be proven/disproven in ZF
- There exists an infinite hierarchy of sets of ever larger cardinality

- $\mathcal{P}(\mathbb{N})$ is not countable (in fact, $|\mathcal{P}(\mathbb{N})| = |\mathbb{R}|$)
- The Continuum Hypothesis claims there is no set ${\cal S}$ with $|\mathbb{N}|<|{\cal S}|<|\mathbb{R}|$
- It was 1st of Hilbert's 23 open problems presented in 1900.
 Shown to be independent of ZF set theory by Gödel/Cohen in 1963: cannot be proven/disproven in ZF
- There exists an infinite hierarchy of sets of ever larger cardinality
- $S_0 := \mathbb{N}$ and $S_{i+1} := \mathcal{P}(S_i)$

- $\mathcal{P}(\mathbb{N})$ is not countable (in fact, $|\mathcal{P}(\mathbb{N})| = |\mathbb{R}|$)
- The Continuum Hypothesis claims there is no set S with $|\mathbb{N}|<|S|<|\mathbb{R}|$
- It was 1st of Hilbert's 23 open problems presented in 1900.
 Shown to be independent of ZF set theory by Gödel/Cohen in 1963: cannot be proven/disproven in ZF
- There exists an infinite hierarchy of sets of ever larger cardinality
- $S_0 := \mathbb{N}$ and $S_{i+1} := \mathcal{P}(S_i)$
- $\bullet |S_0| < |S_1| < \ldots < |S_i| < |S_{i+1}| < \ldots$