
Discrete Mathematics & Mathematical Reasoning
Cardinality

Colin Stirling

Informatics

Some slides based on ones by Myrto Arapinis and by Richard Mayr

Colin Stirling (Informatics) Discrete Mathematics (Section 2.5) Today 1 / 10



Cardinality of Sets

Definition
Two sets A and B have the same cardinality, |A| = |B|, iff there
exists a bijection from A to B

|A| ≤ |B| iff there exists an injection from A to B
|A| < |B| iff |A| ≤ |B| and |A| 6= |B| (A smaller cardinality than B)

When A and B are finite |A| = |B| iff they have same size

N and its subset Even = {2n | n ∈ N} have the same cardinality,
because f : N→ Even where f (n) = 2n is a bijection
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Countable Sets

Definition
A set S is called countably infinite, iff it has the same cardinality as
the natural numbers, |S| = |N|

A set is called countable iff it is either finite or countably infinite
A set that is not countable is called uncountable
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The positive rational numbers are countable
Construct a bijection f : N→ Q+

List fractions p/q with q = n in the nth row

f traverses this list in the order for m = 2, 3, 4, . . . visiting all p/q with
p + q = m (and listing only new rationals)

P1: 1
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FIGURE 3 The Positive Rational Numbers Are Countable.

reader to show that the function f (n) = n/2 when n is even and f (n) = −(n − 1)/2 when n
is odd is such a function. Consequently, the set of all integers is countable. ▲

It is not surprising that the set of odd integers and the set of all integers are both countable
sets (as shown in Examples 1 and 3). Many people are amazed to learn that the set of rational
numbers is countable, as Example 4 demonstrates.

EXAMPLE 4 Show that the set of positive rational numbers is countable.

Solution: It may seem surprising that the set of positive rational numbers is countable, but we
will show how we can list the positive rational numbers as a sequence r1, r2, . . . , rn, . . . . First,
note that every positive rational number is the quotient p/q of two positive integers. We can
arrange the positive rational numbers by listing those with denominator q = 1 in the first row,
those with denominator q = 2 in the second row, and so on, as displayed in Figure 3.

The key to listing the rational numbers in a sequence is to first list the positive rational
numbers p/q with p + q = 2, followed by those with p + q = 3, followed by those with
p + q = 4, and so on, following the path shown in Figure 3. Whenever we encounter a number
p/q that is already listed, we do not list it again. For example, when we come to 2/2 = 1 we
do not list it because we have already listed 1/1 = 1. The initial terms in the list of positive
rational numbers we have constructed are 1, 1/2, 2, 3, 1/3, 1/4, 2/3, 3/2, 4, 5, and so on. These
numbers are shown circled; the uncircled numbers in the list are those we leave out because
they are already listed. Because all positive rational numbers are listed once, as the reader can
verify, we have shown that the set of positive rational numbers is countable. ▲

An Uncountable Set
Not all infinite sets have
the same size! We have seen that the set of positive rational numbers is a countable set. Do we have a promising

candidate for an uncountable set? The first place we might look is the set of real numbers. In
Example 5 we use an important proof method, introduced in 1879 by Georg Cantor and known
as the Cantor diagonalization argument, to prove that the set of real numbers is not countable.
This proof method is used extensively in mathematical logic and in the theory of computation.

EXAMPLE 5 Show that the set of real numbers is an uncountable set.

Solution: To show that the set of real numbers is uncountable, we suppose that the set of real
numbers is countable and arrive at a contradiction. Then, the subset of all real numbers that
fall between 0 and 1 would also be countable (because any subset of a countable set is also
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Finite strings

Theorem
The set Σ∗ of all finite strings over a finite alphabet Σ is countably
infinite

Proof.
First define an (alphabetical) ordering on the symbols in Σ
Show that the strings can be listed in a sequence

I First single string ε of length 0
I Then all strings of length 1 in lexicographic order
I Then all strings of length 2 in lexicographic order
I etc

This implies a bijection from N to Σ∗

The set of Java-programs is countable; a program is just a finite string
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Infinite binary strings

An infinite length string of bits 10010 . . .

Such a string is a function d : N→ {0, 1}
with the property dm = d(m) is the mth symbol (starting from 0)
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Uncountable sets

Theorem
The set of infinite binary strings is uncountable

Proof.
Let X be the set of infinite binary strings. For a contradiction assume
that a bijection f : N→ X exists. So, f must be onto (surjective).
Assume that f (i) = d i for i ∈ N. So, X = {d0, d1, . . . , dm, . . .}. Define
the infinite binary string d as follows: dn = (dn

n + 1) mod 2. But for
each m, d 6= dm because dm 6= dm

m . So, f is not a surjection.

The technique used here is called diagonalization

Similar argument shows that R via [0, 1] is uncountable using infinite
decimal strings (see book). “Most functions” are not computable!
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Schröder-Bernstein Theorem

Theorem
If |A| ≤ |B| and |B| ≤ |A| then |A| = |B|

Example |(0, 1)| = |(0, 1]|
|(0, 1)| ≤ |(0, 1]| using identity function
|(0, 1]| ≤ |(0, 1)| use f (x) = x/2 as (0, 1/2] ⊂ (0, 1)
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Cantor’s theorem

Theorem
|A| < |P(A)|

Proof.
Consider the injection f : A→ P(A) with f (a) = {a} for any a ∈ A.
Therefore, |A| ≤ |P(A)|. Next we show there is not a surjection
f : A→ P(A). For a contradiction, assume that a surjection f exists.
We define the set B ⊆ A: B = {x ∈ A | x 6∈ f (x)}. Since f is a
surjection, there must exist an a ∈ A s.t. B = f (a). Now there are two
cases:

1 If a ∈ B then, by definition of B, a 6∈ f (a) = B. Contradiction
2 If a 6∈ B then a 6∈ f (a). Thus, by definition of B, a ∈ B.

Contradiction
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Implications of Cantor’s theorem

P(N) is not countable (in fact, |P(N)| = |R|)

The Continuum Hypothesis claims there is no set S with
|N| < |S| < |R|
It was 1st of Hilbert’s 23 open problems presented in 1900.
Shown to be independent of ZF set theory by Gödel/Cohen in
1963: cannot be proven/disproven in ZF
There exists an infinite hierarchy of sets of ever larger cardinality
S0 := N and Si+1 := P(Si)

|S0| < |S1| < . . . < |Si | < |Si+1| < . . .
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