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Sequences

Sequences are ordered lists of elements

2, 3, 5, 7, 11, 13, 17, 19, . . . or a, b, c, d , . . ., y , z

Definition
A sequence over a set S is a function f from a subset of the integers
(typically N or Z+) to the set S. If the domain of f is finite then the
sequence is finite
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Examples

f : Z+ → Q is f (n) = 1/n defines the sequence

1, 1/2, 1/3, 1/4, . . .

Assuming an = f (n), the sequence is also written a1, a2, a3, . . .

or as {an}n∈Z+

g : N→ N is g(n) = n2 defines the sequence

0, 1, 4, 9, . . .

Assuming bn = g(n), also written b0, b1, b2, . . .

or as {bn}n∈N
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Geometric and arithmetic progressions

A geometric progression is a sequence of the form

a, ar , ar2, ar3, . . . , arn, . . .

Example {bn}n∈N with bn = (−1)n

An arithmetic progression is a sequence of the form

a, a + d , a + 2d , a + 3d , . . . , a + nd , . . .

Example {cn}n∈N with cn = 7− 3n

where the initial elements a, the common ratio r and the common
difference d are real numbers
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Recurrence relations

Definition
A recurrence relation for {an}n∈N is an equation that expresses an in
terms of one or more of the elements a0, a1, . . . , an−1

Typically the recurrence relation expresses an in terms of just a
fixed number of previous elements (such as an = g(an−1, an−2))
The initial conditions specify the first elements of the sequence,
before the recurrence relation applies
A sequence is called a solution of a recurrence relation iff its
terms satisfy the recurrence relation
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Rabbits and Fibonacci sequence

A young pair of rabbits (one of each sex) is placed on an island

A pair of rabbits does not breed until they are 2 months old. After they
are 2 months old each pair produces another pair each month

Find a recurrence relation for number of rabbits after n months
assuming no rabbits die

Answer is the Fibonacci sequence
f (0) = 0
f (1) = 1
f (n) = f (n − 1) + f (n − 2) for n ≥ 2

Yields the sequence 0, 1, 1, 2, 3, 5, 8, 13, . . .
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Solving recurrence relations

Finding a formula for the nth term of the sequence generated by a
recurrence relation is called solving the recurrence relation

Such a formula is called a closed formula

Various more advanced methods for solving recurrence relations
are covered in Chapter 8 of the book (not part of this course)

Here we illustrate by example the method of iteration in which we
need to guess the formula

The guess can be proved correct by the method of induction (to
be covered)
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Iterative solution - working upwards

Forward substitution

an = an−1 + 3 for n ≥ 2 with a1 = 2

a2 = 2 + 3
a3 = (2 + 3) + 3 = 2 + 3 · 2
a4 = (2 + 2 · 3) + 3 = 2 + 3 · 3

...
an = an−1 + 3 = (2 + 3 · (n − 2)) + 3 = 2 + 3 · (n − 1)
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Iterative solution - working downward

Backward substitution

an = an−1 + 3 for n ≥ 2 with a1 = 2

an = an−1 + 3
= (an−2 + 3) + 3 = an−2 + 3 · 2
= (an−3 + 3) + 3 · 2 = an−3 + 3 · 3

...
= a2 + 3(n − 2) = (a1 + 3) + 3 · (n − 2) = 2 + 3 · (n − 1)
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Compound interest

Suppose a person deposits £1000 in a savings account yielding
3% per year with interest compounded annually. How much is in
the account after 20 years?

Let Pn denote amount after n years
Pn = Pn−1 + 0.03 Pn−1 = (1.03)Pn−1

The initial condition P0 = 1000.
P1 = (1.03) P0, . . ., Pn = (1.03)Pn−1 = (1.03)nP0

P20 = (1.03)20 1000 = 1, 806
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Common sequences

P1: 1

CH02 Rosen-2311T rosen.cls July 9, 2012 14:50

162 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

TABLE 1 Some Useful Sequences.

nth Term First 10 Terms

n2 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, . . .

n3 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, . . .

n4 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000, . . .

2n 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

3n 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, . . .

n! 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, . . .

fn 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .

Solution: To attack this problem, we begin by looking at the difference of consecutive terms,
but we do not see a pattern. When we form the ratio of consecutive terms to see whether each
term is a multiple of the previous term, we find that this ratio, although not a constant, is close
to 3. So it is reasonable to suspect that the terms of this sequence are generated by a formula
involving 3n. Comparing these terms with the corresponding terms of the sequence {3n}, we
notice that the nth term is 2 less than the corresponding power of 3. We see that an = 3n − 2
for 1 ≤ n ≤ 10 and conjecture that this formula holds for all n. ▲

We will see throughout this text that integer sequences appear in a wide range of contexts in
discrete mathematics. Sequences we have encountered or will encounter include the sequence
of prime numbers (Chapter 4), the number of ways to order n discrete objects (Chapter 6), the
number of moves required to solve the famous Tower of Hanoi puzzle with n disks (Chapter 8),
and the number of rabbits on an island after n months (Chapter 8).

Check out the puzzles at
the OEIS site. Integer sequences appear in an amazingly wide range of subject areas besides discrete

mathematics, including biology, engineering, chemistry, and physics, as well as in puzzles. An
amazing database of over 200,000 different integer sequences can be found in the On-Line
Encyclopedia of Integer Sequences (OEIS). This database was originated by Neil Sloane in the
1960s. The last printed version of this database was published in 1995 ([SIPI95]); the current
encyclopedia would occupy more than 750 volumes of the size of the 1995 book with more than
10,000 new submissions a year. There is also a program accessible via the Web that you can use
to find sequences from the encyclopedia that match initial terms you provide.

Summations

Next, we consider the addition of the terms of a sequence. For this we introduce summation
notation. We begin by describing the notation used to express the sum of the terms

am, am+1, . . . , an

from the sequence {an}. We use the notation

n∑

j= m

aj ,
∑n

j= m aj , or
∑

m≤j≤n aj

(read as the sum from j = m to j = n of aj ) to represent

am + am+1 + · · · + an.

Here, the variable j is called the index of summation, and the choice of the letter j as the
variable is arbitrary; that is, we could have used any other letter, such as i or k. Or, in notation,

n∑

j=m

aj =
n∑

i=m

ai =
n∑

k=m

ak.
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Summations

Given a sequence {an}, the sum of terms am, am+1, . . . , a` is

am + am+1 + . . . + a`

∑̀
j=m

aj or
∑

m≤j≤`

aj

The variable j is called the index of summation

More generally for an index set S∑
j∈S

aj
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Useful summation formulas

P1: 1

CH02 Rosen-2311T rosen.cls July 9, 2012 14:50

166 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

TABLE 2 Some Useful Summation Formulae.

Sum Closed Form

n∑

k = 0

ark (r ̸= 0) arn+1 − a
r − 1

, r ̸= 1

n∑

k = 1

k
n(n + 1)

2

n∑

k = 1

k2 n(n + 1)(2n + 1)

6

n∑

k = 1

k3 n2(n + 1)2

4

∞∑

k = 0

xk, |x| < 1
1

1 − x

∞∑

k = 1

kxk−1, |x| < 1
1

(1 − x)2

EXAMPLE 23 Find
∑100

k = 50k
2.

Solution: First note that because
∑100

k = 1k
2 = ∑49

k = 1k
2 +∑100

k = 50k
2, we have

100∑

k = 50

k2 =
100∑

k = 1

k2 −
49∑

k = 1

k2.

Using the formula
∑n

k = 1k
2 = n(n + 1)(2n + 1)/6 from Table 2 (and proved in Exercise 38),

we see that

100∑

k = 50

k2 = 100 · 101 · 201
6

− 49 · 50 · 99
6

= 338,350 − 40,425 = 297,925. ▲

SOME INFINITE SERIES Although most of the summations in this book are finite sums,
infinite series are important in some parts of discrete mathematics. Infinite series are usually
studied in a course in calculus and even the definition of these series requires the use of calculus,
but sometimes they arise in discrete mathematics, because discrete mathematics deals with infi-
nite collections of discrete elements. In particular, in our future studies in discrete mathematics,
we will find the closed forms for the infinite series in Examples 24 and 25 to be quite useful.

EXAMPLE 24 (Requires calculus) Let x be a real number with |x| < 1. Find
∑∞

n = 0 xn.

Solution: By Theorem 1 with a = 1 and r = x we see that
∑k

n = 0 xn = xk+1 − 1
x − 1

. Because

|x| < 1, xk+1 approaches 0 as k approaches infinity. It follows that

∞∑

n = 0

xn = lim
k→∞

xk+1 − 1
x − 1

= 0 − 1
x − 1

= 1
1 − x

. ▲

We can produce new summation formulae by differentiating or integrating existing formulae.
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Products

Given a sequence {an}, the product of terms am, am+1, . . . , a` is

am · am+1 · . . . · a`

∏̀
j=m

aj or
∏

m≤j≤`

aj

More generally for a finite index set S one writes∏
j∈S

aj
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