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Sequences

Sequences are ordered lists of elements, e.g. 2, 3, 5, 7, 11, 13, 17,
19, ...ora, b, c, d, ...

Definition
A sequence over a set S is a function f from a subset of the

integers (typically N or N—{0}) to the set S. If the domain of f is
finite then the sequence is finite

Example Let f : N — {0} — Q be defined by £(n) & 1/n. This

defines the sequence
1, 1/2, 1/3, 1/4,...

Let a, = f(n). Then the sequence is also written as a1, az, as,
...or as {an}pen—{0}

N
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Geometric vs. Arithmetic progression

e A geometric progression is a sequence of the form

a, ar, ar®, ar®,

n

Loyar, L
where both the initial element a and the common ratio r are
real numbers

e An arithmetic progression is a sequence of the form

a, a+d, a+2d, a+3d, ..., a+nd, ...

where both the initial element a and the common difference d
are real numbers



Recurrence relations

Definition

A recurrence relation for the sequence {a,}nen is an equation that
expresses a, in terms of (one or more of) the previous elements ap,
ai, ..., a,—1 of the sequence

e Typically the recurrence relation expresses a, in terms of just
a fixed number of previous elements, e.g.
an = g(an—ly 3n—2) =2ap_1+ap2+7

e The initial conditions specify the first elements of the
sequence, before the recurrence relation applies

e A sequence is called a solution of a recurrence relation iff its
terms satisfy the recurrence relation

Example Let ag =2 and a, = a,_1 + 3 for n > 1.Then a; =5,
a, = 8, a3 = 11, etc. Generally the solution is f(n) =2+ 3n
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Fibonacci sequence

The Fibonacci sequence is described by the following linear
recurrence relation

f0) = 0
fl1)y = 1
f(n) = f(n=1)+f(n—2) forn>2

You obtain the sequence 0, 1, 1, 2, 3, 5, 8, 13, ...

How to solve general recurrence with f(0) = a, f(1) = b,
f(n)=cf(n—1)+df(n—2)?

Linear algebra. Matrix multiplication. Base transforms. Diagonal
form., etc
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Solving recurrence relations

e Finding a formula for the n" term of the sequence generated
by a recurrence relation is called solving the recurrence
relation

e Such a formula is called a closed formula

e Various methods for solving recurrence relations will be
covered later in the course where recurrence relations will be

studied in greater depth

e Here we illustrate by example the method of iteration in which
we need to guess the formula

e The guess can be proved correct by the method of induction
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Iterative solution - Example 1

Method 1: Working upward, forward substitution
Let a, be a sequence that satisfies the recurrence relation
ap = ap—1 + 3 for n > 2 and suppose that a; =2

a
as
a4

an

2+3
(2+43)+3=2+3-2
(2+2-3)4+3=2+3-3

an—14+3=(2+3-(n-2))+3=2+3-(n—-1)



Iterative solution - Example 2

Method 2: Working downward, backward substitution
Let a, be a sequence that satisfies the recurrence relation
ap = ap—1 + 3 for n > 2 and suppose that a; =2

a, = ap-1+3
= (an72+3)+3:an72+3‘2
= (an3+3)+3-2=a,3+3-3

= ;9‘2‘+3(n—2):(a1+3)—|—3-(n—2):2+3-(n—1)
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Common sequences

TABLE 1 Some Useful Sequences.
nth Term First 10 Terms

n? 1,4,9, 16, 25, 36, 49, 64, 81, 100, . ..
n3 1, 8,27, 64,125,216, 343,512,729, 1000, . ..
nt 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000, . ..
2" 2,4,8,16,32,64, 128,256,512, 1024, ...
3" 3,9,27,81,243,729, 2187, 6561, 19683, 59049, . ..
n! 1,2,6, 24, 120, 720, 5040, 40320, 362880, 3628800, . ..
fn 1,1,2,3,5,8,13,21,34,55,89, ...

o & - = = 9ace
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Summations

Given a sequence {a,}. The sum of the terms an,, am+1, ---, a¢ is
written as

am+am+1+ ...+ ar

l
>3
j=1
> 3

m<j</{
The variable j is called the index of summation. It runs through all
the integers starting with its lower limit m and ending with its
upper limit £. More generally for an index set S one writes

>3

Jes
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Useful summation formulas

TABLE 2 Some Useful Summation Formulae.

Sum Closed Form
n
+1
3 ark (r £0) ﬂi—fﬂm¢1
k=0 "=
n
Z k n(n+1)
2

nn+1)Q2n+1)
6

n2(m+1)?
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Products

Given a sequence {a,}. The sum of the terms an,, am+1, --., a¢ is
written as

Am * amy1 * ... % ap

l
IIa
Jj=1
II &

m<j<¢

More generally for an index set S one writes

JE!

Jjes
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Counting: finite sequences

Given a finite set S with |S| = k.

e How many different sequences over S of length n are there?
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Counting: finite sequences

Given a finite set S with |S| = k.

e How many different sequences over S of length n are there?
Answer: For each of the n elements of the sequence there are
k possible choices. So the answer is k * k * ... * k (n times),

ie.
H k = k"

1<j<n
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Counting: finite sequences

Given a finite set S with |S| = k.

e How many different sequences over S of length n are there?
Answer: For each of the n elements of the sequence there are
k possible choices. So the answer is k * k * ... * k (n times),

ie.
H k = k"

1<j<n
e How many sequences over S of length < n are there?

Answer: Sum over the (non-overlapping!) cases of length
j=0,1,2...,n

kn+1 1
Z W= 1

(By the sum formula of the previous slide.)
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Counting: relations and functions on finite sets

Let A and B be finite sets, i.e. |A| and |B] are finite.

e What is the size of A x B?
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Counting: relations and functions on finite sets

Let A and B be finite sets, i.e. |A| and |B| are finite.
e What is the size of Ax B? |Ax B| = |A| - |B|

e How many binary relations R C A x B from A to B are there?
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Counting: relations and functions on finite sets

Let A and B be finite sets, i.e. |A| and |B| are finite.
e What is the size of Ax B? |Ax B| = |A| - |B|
e How many binary relations R C A x B from A to B are there?

The number of relations from A to B is the number of subsets
of A x B.
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Counting: relations and functions on finite sets

Let A and B be finite sets, i.e. |A| and |B| are finite.
e What is the size of Ax B? |Ax B| = |A| - |B|
e How many binary relations R C A x B from A to B are there?
The number of relations from A to B is the number of subsets

of A x B.Thus the answer is 2/AI'Bl

e How many total functions f : A — B from A to B are there?
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Counting: relations and functions on finite sets

Let A and B be finite sets, i.e. |A| and |B| are finite.

e What is the size of A x B? |Ax B| =|A|-|B|

e How many binary relations R C A x B from A to B are there?
The number of relations from A to B is the number of subsets
of A x B.Thus the answer is 2/AI'Bl

e How many total functions f : A — B from A to B are there?A
total function f assigns exactly one element from B to every
element of A. Thus for every element of a € A there are |B)|
possible choices for f(a) € B.
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Counting: relations and functions on finite sets

Let A and B be finite sets, i.e. |A| and |B| are finite.

e What is the size of A x B? |Ax B| =|A|-|B|

e How many binary relations R C A x B from A to B are there?
The number of relations from A to B is the number of subsets
of A x B.Thus the answer is 2/AI'Bl

e How many total functions f : A — B from A to B are there?A
total function f assigns exactly one element from B to every
element of A. Thus for every element of a € A there are |B)|
possible choices for f(a) € B. Thus the answer is |B|/A

14 /21



Cardinality of (Infinite) Sets

The sizes of finite sets are easy to compare. But what about
infinite sets? Can one infinite set be larger than another?

D¢
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Cardinality of (Infinite) Sets

The sizes of finite sets are easy to compare. But what about
infinite sets? Can one infinite set be larger than another?

Definition
e Two sets A and B have the same cardinality, written
|A| = | B| iff there exists a bijection from A to B
o We say |A| < |B] iff there exists an injection from A to B

A has lower cardinality than B, written |A| < |B] iff |A| < |B]|
and |A] # ||
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Cardinality of (Infinite) Sets

The sizes of finite sets are easy to compare. But what about
infinite sets? Can one infinite set be larger than another?

Definition
e Two sets A and B have the same cardinality, written
|A| = | B| iff there exists a bijection from A to B
o We say |A| < |B] iff there exists an injection from A to B
o A has lower cardinality than B, written |A| < |B| iff |A| < |B]|
and |A| # |B)

Note that this definition applies to general sets, not only to finite
ones. An infinite set (but not a finite one) can have the same
cardinality as a strict subset.
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Cardinality of (Infinite) Sets

The sizes of finite sets are easy to compare. But what about
infinite sets? Can one infinite set be larger than another?

Definition
e Two sets A and B have the same cardinality, written
|A| = | B| iff there exists a bijection from A to B
o We say |A| < |B] iff there exists an injection from A to B

A has lower cardinality than B, written |A| < |B] iff |A| < |B]|
and |A] # ||

Note that this definition applies to general sets, not only to finite
ones. An infinite set (but not a finite one) can have the same
cardinality as a strict subset.

Example The set of natural numbers N and the set of even
numbers even := {2n | n € N} have the same cardinality, because
f : N — even with f(n) = 2n is a bijection
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Countable Sets

Definition
e A set S is called countably infinite, iff it has the same
cardinality as the natural numbers, |S| = |N]|

o A set is called countable iff it is either finite or countably
infinite

e A set that is not countable is called uncountable
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The positive rational numbers are countable

Construct a bijection f : N — Q:

e List fractions p/q with g = n in the n" row
e f traverses this list in the following order
> Forn=1,2,3,... do visit all p/q with p+qg=n

Terms not circled C
are not listed

because they

repeat previously
listed terms C@/@/

w\:\ )
v R Ew

3
3
2 3 4 5
/4 4 4 4
2 3 4 5
C 5 5 5 5
o & = = = 9acr
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Finite strings

infinite.

The set ¥* of all finite strings over a finite alphabet ¥ is countably

«O0)» «F)» « =>»

« =)

Do
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Finite strings

Theorem

The set X* of all finite strings over a finite alphabet ¥ is countably
infinite.

Proof.

o First define an (alphabetical) ordering on the symbols in X
Show that the strings can be listed in a sequence
> First all strings of length 0 in lexicographic order
> Then all strings of length 1 in lexicographic order
> Then all strings of length 2 in lexicographic order
> etc

e This implies a bijection from N to ¥* OJ
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Finite strings

Theorem

The set X* of all finite strings over a finite alphabet ¥ is countably
infinite.

Proof.

o First define an (alphabetical) ordering on the symbols in X
Show that the strings can be listed in a sequence
> First all strings of length 0 in lexicographic order
> Then all strings of length 1 in lexicographic order
> Then all strings of length 2 in lexicographic order
> etc

e This implies a bijection from N to ¥* OJ

In particular, the set of all Java-programs is countable, since every
program is just a finite string
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Combining countable sets

The union 51 U S, of two countably infinite sets S1, Sy is
countably infinite

«O0)» «F)» « =>»

« =)

Do
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Combining countable sets

Theorem

The union S; U Sy of two countably infinite sets S1, Sy is
countably infinite

Proof.

(Sketch) Since S1, S are countably infinite, there must exist
bijections f; : N — 51 and f» : N — S,. Consider the disjoint parts
S1 and S, — S;. If So — S5 s finite then consider this part
separately and build a bijection £ : N — S; U S, by shifting f; by
|S2 — S1|. Otherwise, construct bijections between the two parts
and the even/odd natural numbers, respectively. O
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Uncountable sets

The set of infinite binary strings is uncountable. l

«O0)» «F)» « =>»

« =

Do
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Uncountable sets

Theorem
The set of infinite binary strings is uncountable.

Proof.

Assume by contraposition that a bijection f : N — InfiniteStrings
exists. Let d, be the nt" symbol of string f(n). We define a string
x such that the n" symbol of x is d, + 1 (mod 2).Thus

Vn € N. x # f(n) and f is not a surjection. Contradiction O

v
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Uncountable sets

Theorem
The set of infinite binary strings is uncountable.

Proof.

Assume by contraposition that a bijection f : N — InfiniteStrings
exists. Let d, be the nt" symbol of string f(n). We define a string
x such that the n" symbol of x is d, + 1 (mod 2).Thus

Vn € N. x # f(n) and f is not a surjection. Contradiction O

v

Similarly for the infinite decimal strings (over digits
{0,1,2,...,9}). Just use modulo 10 instead of modulo 2
The technique used in the proof above is called diagonalization
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The real numbers are uncountable

A similar diagonalization argument shows uncountability of R

The real numbers in the interval (0,1) C R are uncountable |
The real numbers R are uncountable I

Find a bijection between (0,1) and R. E.g.
f(x) = tan(mx — 7/2)

i
-
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