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Sequences

Sequences are ordered lists of elements, e.g. 2, 3, 5, 7, 11, 13, 17,
19, . . . or a, b, c , d , . . .

Definition

A sequence over a set S is a function f from a subset of the
integers (typically N or N−{0}) to the set S . If the domain of f is
finite then the sequence is finite

Example Let f : N− {0} → Q be defined by f (n)
def
= 1/n. This

defines the sequence

1, 1/2, 1/3, 1/4, . . .

Let an = f (n). Then the sequence is also written as a1, a2, a3,
. . . or as {an}n∈N−{0}
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Geometric vs. Arithmetic progression

• A geometric progression is a sequence of the form

a, ar , ar2, ar3, . . . , arn, . . .

where both the initial element a and the common ratio r are
real numbers

• An arithmetic progression is a sequence of the form

a, a + d , a + 2d , a + 3d , . . . , a + nd , . . .

where both the initial element a and the common difference d
are real numbers
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Recurrence relations

Definition

A recurrence relation for the sequence {an}n∈N is an equation that
expresses an in terms of (one or more of) the previous elements a0,
a1, . . . , an−1 of the sequence

• Typically the recurrence relation expresses an in terms of just
a fixed number of previous elements, e.g.
an = g(an−1, an−2) = 2an−1 + an−2 + 7

• The initial conditions specify the first elements of the
sequence, before the recurrence relation applies

• A sequence is called a solution of a recurrence relation iff its
terms satisfy the recurrence relation

Example Let a0 = 2 and an = an−1 + 3 for n ≥ 1.Then a1 = 5,
a2 = 8, a3 = 11, etc. Generally the solution is f (n) = 2 + 3n

4 / 21



Fibonacci sequence

The Fibonacci sequence is described by the following linear
recurrence relation

f (0) = 0
f (1) = 1
f (n) = f (n − 1) + f (n − 2) for n ≥ 2

You obtain the sequence 0, 1, 1, 2, 3, 5, 8, 13, . . .

How to solve general recurrence with f (0) = a, f (1) = b,
f (n) = cf (n − 1) + df (n − 2)?
Linear algebra. Matrix multiplication. Base transforms. Diagonal
form., etc

5 / 21



Solving recurrence relations

• Finding a formula for the nth term of the sequence generated
by a recurrence relation is called solving the recurrence
relation

• Such a formula is called a closed formula

• Various methods for solving recurrence relations will be
covered later in the course where recurrence relations will be
studied in greater depth

• Here we illustrate by example the method of iteration in which
we need to guess the formula

• The guess can be proved correct by the method of induction
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Iterative solution - Example 1

Method 1: Working upward, forward substitution
Let an be a sequence that satisfies the recurrence relation
an = an−1 + 3 for n ≥ 2 and suppose that a1 = 2

a2 = 2 + 3
a3 = (2 + 3) + 3 = 2 + 3 · 2
a4 = (2 + 2 · 3) + 3 = 2 + 3 · 3
. . .
an = an − 1 + 3 = (2 + 3 · (n − 2)) + 3 = 2 + 3 · (n − 1)
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Iterative solution - Example 2

Method 2: Working downward, backward substitution
Let an be a sequence that satisfies the recurrence relation
an = an−1 + 3 for n ≥ 2 and suppose that a1 = 2

an = an−1 + 3
= (an−2 + 3) + 3 = an−2 + 3 · 2
= (an−3 + 3) + 3 · 2 = an−3 + 3 · 3
= . . .
= a2 + 3(n − 2) = (a1 + 3) + 3 · (n − 2) = 2 + 3 · (n − 1)
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Common sequences
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TABLE 1 Some Useful Sequences.

nth Term First 10 Terms

n2 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, . . .

n3 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, . . .

n4 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000, . . .

2n 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

3n 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, . . .

n! 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, . . .

fn 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .

Solution: To attack this problem, we begin by looking at the difference of consecutive terms,
but we do not see a pattern. When we form the ratio of consecutive terms to see whether each
term is a multiple of the previous term, we find that this ratio, although not a constant, is close
to 3. So it is reasonable to suspect that the terms of this sequence are generated by a formula
involving 3n. Comparing these terms with the corresponding terms of the sequence {3n}, we
notice that the nth term is 2 less than the corresponding power of 3. We see that an = 3n − 2
for 1 ≤ n ≤ 10 and conjecture that this formula holds for all n. ▲

We will see throughout this text that integer sequences appear in a wide range of contexts in
discrete mathematics. Sequences we have encountered or will encounter include the sequence
of prime numbers (Chapter 4), the number of ways to order n discrete objects (Chapter 6), the
number of moves required to solve the famous Tower of Hanoi puzzle with n disks (Chapter 8),
and the number of rabbits on an island after n months (Chapter 8).

Check out the puzzles at
the OEIS site. Integer sequences appear in an amazingly wide range of subject areas besides discrete

mathematics, including biology, engineering, chemistry, and physics, as well as in puzzles. An
amazing database of over 200,000 different integer sequences can be found in the On-Line
Encyclopedia of Integer Sequences (OEIS). This database was originated by Neil Sloane in the
1960s. The last printed version of this database was published in 1995 ([SIPI95]); the current
encyclopedia would occupy more than 750 volumes of the size of the 1995 book with more than
10,000 new submissions a year. There is also a program accessible via the Web that you can use
to find sequences from the encyclopedia that match initial terms you provide.

Summations

Next, we consider the addition of the terms of a sequence. For this we introduce summation
notation. We begin by describing the notation used to express the sum of the terms

am, am+1, . . . , an

from the sequence {an}. We use the notation

n∑

j= m

aj ,
∑n

j= m aj , or
∑

m≤j≤n aj

(read as the sum from j = m to j = n of aj ) to represent

am + am+1 + · · · + an.

Here, the variable j is called the index of summation, and the choice of the letter j as the
variable is arbitrary; that is, we could have used any other letter, such as i or k. Or, in notation,

n∑

j=m

aj =
n∑

i=m

ai =
n∑

k=m

ak.
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Summations

Given a sequence {an}. The sum of the terms am, am+1, . . . , a` is
written as

am + am+1 + . . .+ a`

∑̀
j=1

aj

∑
m≤j≤`

aj

The variable j is called the index of summation. It runs through all
the integers starting with its lower limit m and ending with its
upper limit `. More generally for an index set S one writes∑

j∈S
aj
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Useful summation formulas
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TABLE 2 Some Useful Summation Formulae.

Sum Closed Form

n∑

k = 0

ark (r ̸= 0) arn+1 − a
r − 1

, r ̸= 1

n∑

k = 1

k
n(n + 1)

2

n∑

k = 1

k2 n(n + 1)(2n + 1)

6

n∑

k = 1

k3 n2(n + 1)2

4

∞∑

k = 0

xk, |x| < 1
1

1 − x

∞∑

k = 1

kxk−1, |x| < 1
1

(1 − x)2

EXAMPLE 23 Find
∑100

k = 50k
2.

Solution: First note that because
∑100

k = 1k
2 = ∑49

k = 1k
2 +∑100

k = 50k
2, we have

100∑

k = 50

k2 =
100∑

k = 1

k2 −
49∑

k = 1

k2.

Using the formula
∑n

k = 1k
2 = n(n + 1)(2n + 1)/6 from Table 2 (and proved in Exercise 38),

we see that

100∑

k = 50

k2 = 100 · 101 · 201
6

− 49 · 50 · 99
6

= 338,350 − 40,425 = 297,925. ▲
SOME INFINITE SERIES Although most of the summations in this book are finite sums,
infinite series are important in some parts of discrete mathematics. Infinite series are usually
studied in a course in calculus and even the definition of these series requires the use of calculus,
but sometimes they arise in discrete mathematics, because discrete mathematics deals with infi-
nite collections of discrete elements. In particular, in our future studies in discrete mathematics,
we will find the closed forms for the infinite series in Examples 24 and 25 to be quite useful.

EXAMPLE 24 (Requires calculus) Let x be a real number with |x| < 1. Find
∑∞

n = 0 xn.

Solution: By Theorem 1 with a = 1 and r = x we see that
∑k

n = 0 xn = xk+1 − 1
x − 1

. Because

|x| < 1, xk+1 approaches 0 as k approaches infinity. It follows that

∞∑

n = 0

xn = lim
k→∞

xk+1 − 1
x − 1

= 0 − 1
x − 1

= 1
1 − x

. ▲

We can produce new summation formulae by differentiating or integrating existing formulae.
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Products

Given a sequence {an}. The sum of the terms am, am+1, . . . , a` is
written as

am ∗ am+1 ∗ . . . ∗ a`

∏̀
j=1

aj

∏
m≤j≤`

aj

More generally for an index set S one writes∏
j∈S

aj
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Counting: finite sequences

Given a finite set S with |S | = k.

• How many different sequences over S of length n are there?

Answer: For each of the n elements of the sequence there are
k possible choices. So the answer is k ∗ k ∗ . . . ∗ k (n times),
i.e. ∏

1≤j≤n
k = kn

• How many sequences over S of length ≤ n are there?
Answer: Sum over the (non-overlapping!) cases of length
j = 0, 1, 2, . . . , n

n∑
j=1

k j =
kn+1 − 1

k − 1

(By the sum formula of the previous slide.)
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Counting: relations and functions on finite sets

Let A and B be finite sets, i.e. |A| and |B| are finite.

• What is the size of A× B?

|A× B| = |A| · |B|

• How many binary relations R ⊆ A×B from A to B are there?
The number of relations from A to B is the number of subsets
of A× B.Thus the answer is 2|A|·|B|

• How many total functions f : A→ B from A to B are there?A
total function f assigns exactly one element from B to every
element of A. Thus for every element of a ∈ A there are |B|
possible choices for f (a) ∈ B. Thus the answer is |B||A|
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Cardinality of (Infinite) Sets

The sizes of finite sets are easy to compare. But what about
infinite sets? Can one infinite set be larger than another?

Definition

• Two sets A and B have the same cardinality, written
|A| = |B| iff there exists a bijection from A to B

• We say |A| ≤ |B| iff there exists an injection from A to B

• A has lower cardinality than B, written |A| < |B| iff |A| ≤ |B|
and |A| 6= |B|

Note that this definition applies to general sets, not only to finite
ones. An infinite set (but not a finite one) can have the same
cardinality as a strict subset.
Example The set of natural numbers N and the set of even
numbers even := {2n | n ∈ N} have the same cardinality, because
f : N→ even with f (n) = 2n is a bijection
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Countable Sets

Definition

• A set S is called countably infinite, iff it has the same
cardinality as the natural numbers, |S | = |N|
• A set is called countable iff it is either finite or countably

infinite

• A set that is not countable is called uncountable
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The positive rational numbers are countable

Construct a bijection f : N→ Q+:

• List fractions p/q with q = n in the nth row
• f traverses this list in the following order

. For n = 1, 2, 3, . . . do visit all p/q with p + q = n
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FIGURE 3 The Positive Rational Numbers Are Countable.

reader to show that the function f (n) = n/2 when n is even and f (n) = −(n − 1)/2 when n
is odd is such a function. Consequently, the set of all integers is countable. ▲

It is not surprising that the set of odd integers and the set of all integers are both countable
sets (as shown in Examples 1 and 3). Many people are amazed to learn that the set of rational
numbers is countable, as Example 4 demonstrates.

EXAMPLE 4 Show that the set of positive rational numbers is countable.

Solution: It may seem surprising that the set of positive rational numbers is countable, but we
will show how we can list the positive rational numbers as a sequence r1, r2, . . . , rn, . . . . First,
note that every positive rational number is the quotient p/q of two positive integers. We can
arrange the positive rational numbers by listing those with denominator q = 1 in the first row,
those with denominator q = 2 in the second row, and so on, as displayed in Figure 3.

The key to listing the rational numbers in a sequence is to first list the positive rational
numbers p/q with p + q = 2, followed by those with p + q = 3, followed by those with
p + q = 4, and so on, following the path shown in Figure 3. Whenever we encounter a number
p/q that is already listed, we do not list it again. For example, when we come to 2/2 = 1 we
do not list it because we have already listed 1/1 = 1. The initial terms in the list of positive
rational numbers we have constructed are 1, 1/2, 2, 3, 1/3, 1/4, 2/3, 3/2, 4, 5, and so on. These
numbers are shown circled; the uncircled numbers in the list are those we leave out because
they are already listed. Because all positive rational numbers are listed once, as the reader can
verify, we have shown that the set of positive rational numbers is countable. ▲

An Uncountable Set
Not all infinite sets have
the same size! We have seen that the set of positive rational numbers is a countable set. Do we have a promising

candidate for an uncountable set? The first place we might look is the set of real numbers. In
Example 5 we use an important proof method, introduced in 1879 by Georg Cantor and known
as the Cantor diagonalization argument, to prove that the set of real numbers is not countable.
This proof method is used extensively in mathematical logic and in the theory of computation.

EXAMPLE 5 Show that the set of real numbers is an uncountable set.

Solution: To show that the set of real numbers is uncountable, we suppose that the set of real
numbers is countable and arrive at a contradiction. Then, the subset of all real numbers that
fall between 0 and 1 would also be countable (because any subset of a countable set is also
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Finite strings

Theorem

The set Σ∗ of all finite strings over a finite alphabet Σ is countably
infinite.

Proof.

• First define an (alphabetical) ordering on the symbols in Σ
Show that the strings can be listed in a sequence

. First all strings of length 0 in lexicographic order

. Then all strings of length 1 in lexicographic order

. Then all strings of length 2 in lexicographic order

. etc

• This implies a bijection from N to Σ∗

In particular, the set of all Java-programs is countable, since every
program is just a finite string
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Combining countable sets

Theorem

The union S1 ∪ S2 of two countably infinite sets S1, S2 is
countably infinite

Proof.

(Sketch) Since S1, S2 are countably infinite, there must exist
bijections f1 : N→ S1 and f2 : N→ S2. Consider the disjoint parts
S1 and S2 − S1. If S2 − S1 is finite then consider this part
separately and build a bijection f : N→ S1 ∪ S2 by shifting f1 by
|S2 − S1|. Otherwise, construct bijections between the two parts
and the even/odd natural numbers, respectively.
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Uncountable sets

Theorem

The set of infinite binary strings is uncountable.

Proof.

Assume by contraposition that a bijection f : N→ InfiniteStrings
exists. Let dn be the nth symbol of string f (n). We define a string
x such that the nth symbol of x is dn + 1 (mod 2).Thus
∀n ∈ N. x 6= f (n) and f is not a surjection. Contradiction

Similarly for the infinite decimal strings (over digits
{0, 1, 2, . . . , 9}). Just use modulo 10 instead of modulo 2
The technique used in the proof above is called diagonalization
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The real numbers are uncountable

A similar diagonalization argument shows uncountability of R

Theorem

The real numbers in the interval (0, 1) ⊆ R are uncountable

Theorem

The real numbers R are uncountable

Proof.

Find a bijection between (0, 1) and R. E.g.
f (x) = tan(πx − π/2)
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