Functions¹

Myrto Arapinis

School of Informatics University of Edinburgh

September 29, 2014

□ > < □ > < ⊇ > < ⊇ > < ⊇ > 1/15

A relation is a function iff each element of its domain is related to at most one element of its codomain

Definition

Let A and B be two nonempty sets. A relation $f \subseteq A \times B$ is called a **partial function** from A to B iff

 $\forall a \in A. \ \forall b, c \in B. \ (a, b) \in f \land (a, c) \in f \rightarrow b = c$

A relation is a function iff each element of its domain is related to at most one element of its codomain

Definition

Let A and B be two nonempty sets. A relation $f \subseteq A \times B$ is called a **partial function** from A to B iff

 $\forall a \in A. \ \forall b, c \in B. \ (a, b) \in f \land (a, c) \in f \rightarrow b = c$

• We usually write f(a) = b instead of $(a, b) \in f$

A relation is a function iff each element of its domain is related to at most one element of its codomain

Definition

Let A and B be two nonempty sets. A relation $f \subseteq A \times B$ is called a **partial function** from A to B iff

 $\forall a \in A. \ \forall b, c \in B. \ (a, b) \in f \land (a, c) \in f \rightarrow b = c$

- We usually write f(a) = b instead of $(a, b) \in f$
- If f(a) = b, we say that b is the image of a under f

A relation is a function iff each element of its domain is related to at most one element of its codomain

Definition

$$\forall a \in A. \ \forall b, c \in B. \ (a, b) \in f \land (a, c) \in f \ \rightarrow \ b = c$$

- We usually write f(a) = b instead of $(a, b) \in f$
- If f(a) = b, we say that b is the image of a under f
- If f(a) = b, we say that a is the pre-image of b under f

A relation is a function iff each element of its domain is related to at most one element of its codomain

Definition

$$\forall a \in A. \ \forall b, c \in B. \ (a, b) \in f \land (a, c) \in f \ \rightarrow \ b = c$$

- We usually write f(a) = b instead of $(a, b) \in f$
- If f(a) = b, we say that b is the image of a under f
- If f(a) = b, we say that a is the pre-image of b under f
- Domain of definition of $f: D_f = \{a \in A \mid \exists b \in B. f(a) = b\}$

A relation is a function iff each element of its domain is related to at most one element of its codomain

Definition

$$\forall a \in A. \ \forall b, c \in B. \ (a, b) \in f \land (a, c) \in f \
ightarrow \ b = c$$

- We usually write f(a) = b instead of $(a, b) \in f$
- If f(a) = b, we say that b is the image of a under f
- If f(a) = b, we say that a is the pre-image of b under f
- Domain of definition of $f: \mathcal{D}_f = \{a \in A \mid \exists b \in B. f(a) = b\}$
- Range of $f: f(A) = \{b \in B \mid \exists a \in A. f(a) = b\}$

A relation is a function iff each element of its domain is related to at most one element of its codomain

Definition

$$\forall a \in A. \ \forall b, c \in B. \ (a, b) \in f \land (a, c) \in f \
ightarrow \ b = c$$

- We usually write f(a) = b instead of $(a, b) \in f$
- If f(a) = b, we say that b is the image of a under f
- If f(a) = b, we say that a is the pre-image of b under f
- Domain of definition of $f: \mathcal{D}_f = \{a \in A \mid \exists b \in B. f(a) = b\}$
- Range of $f: f(A) = \{b \in B \mid \exists a \in A. f(a) = b\}$
- For all $a \in (A \setminus D_f)$, we say that f(a) is undefined

A relation is a function iff each element of its domain is related to at most one element of its codomain

Definition

$$\forall a \in A. \ \forall b, c \in B. \ (a, b) \in f \land (a, c) \in f \
ightarrow \ b = c$$

- We usually write f(a) = b instead of $(a, b) \in f$
- If f(a) = b, we say that b is the image of a under f
- If f(a) = b, we say that a is the pre-image of b under f
- Domain of definition of $f: \mathcal{D}_f = \{a \in A \mid \exists b \in B. \ f(a) = b\}$
- Range of $f: f(A) = \{b \in B \mid \exists a \in A. f(a) = b\}$
- For all $a \in (A \setminus \mathcal{D}_f)$, we say that f(a) is undefined
- $f: A \to B$ and $f': A' \to B'$ are equal iff A = A', B = B' and $\forall a \in A. \ f(a) = f'(a)$

Example

Consider the function $\sqrt{\cdot} : \mathbb{R} \to \mathbb{R}$.

*D*_√ = (ℝ⁺ ∪ {0}) Note that the domain of a function, and its domain of definition do not necessarily coincide

Example

Consider the function $\sqrt{\cdot} : \mathbb{R} \to \mathbb{R}$.

*D*_√ = (ℝ⁺ ∪ {0}) Note that the domain of a function, and its domain of definition do not necessarily coincide

 √ℝ = (ℝ⁺ ∪ {0}) Note that the codomain of a function, and its range do not necessarily coincide

Example

Consider the function $\sqrt{\cdot} : \mathbb{R} \to \mathbb{R}$.

• $\mathcal{D}_{\sqrt{\cdot}} = (\mathbb{R}^+ \cup \{0\})$ Note that the domain of a function, and its domain of definition do not necessarily coincide

 √ℝ = (ℝ⁺ ∪ {0}) Note that the codomain of a function, and its range do not necessarily coincide

• For all $x \in \mathbb{R}^-$, f is undefined at x

Definition

A partial function $f : A \rightarrow B$ is called a **total function**^{*a*} iff every element in A is related to exactly one element in B, *i.e.*

 $\forall a \in A. \exists b \in B. f(a) = b$

^aWhen we will say a function, we will mean a total function

Definition

A partial function $f : A \rightarrow B$ is called a **total function**^{*a*} iff every element in *A* is related to exactly one element in *B*, *i.e.*

 $\forall a \in A. \exists b \in B. f(a) = b$

^aWhen we will say a function, we will mean a total function

Example $\sqrt{\cdot}:\mathbb{R}\to\mathbb{R}$ is not a total function

Definition

A partial function $f : A \rightarrow B$ is called a **total function**^{*a*} iff every element in A is related to exactly one element in B, *i.e.*

 $\forall a \in A. \exists b \in B. f(a) = b$

^aWhen we will say a function, we will mean a total function

Example $\sqrt{\cdot}:\mathbb{R}\to\mathbb{R}$ is not a total function

Example The successor function over ${\mathbb R}$ is a total function

Definition

A partial function $f : A \rightarrow B$ is called a **total function**^{*a*} iff every element in A is related to exactly one element in B, *i.e.*

 $\forall a \in A. \exists b \in B. f(a) = b$

^aWhen we will say a function, we will mean a total function

Example $\sqrt{\cdot} : \mathbb{R} \to \mathbb{R}$ is not a total function

Example The successor function over $\mathbb R$ is a total function

Example The identity function over any set A is a total function

Theorem

Let A and B be two finite sets. The set of all relations from A to B, denoted Rel(A, B), has cardinality $2^{|B||A|}$

Theorem

Let A and B be two finite sets. The set of all relations from A to B, denoted Rel(A, B), has cardinality $2^{|B||A|}$

Theorem

Let A and B be two finite sets. The set of all partial functions from A to B, denoted pFun(A, B), has cardinality $(|B| + 1)^{|A|}$

Theorem

Let A and B be two finite sets. The set of all relations from A to B, denoted Rel(A, B), has cardinality $2^{|B||A|}$

Theorem

Let A and B be two finite sets. The set of all partial functions from A to B, denoted pFun(A, B), has cardinality $(|B| + 1)^{|A|}$

Theorem

Let A and B be two finite sets. The set of all total functions from A to B, denoted tFun(A, B), has cardinality $|B|^{|A|}$

Theorem

Let A and B be two finite sets. The set of all relations from A to B, denoted Rel(A, B), has cardinality $2^{|B||A|}$

Theorem

Let A and B be two finite sets. The set of all partial functions from A to B, denoted pFun(A, B), has cardinality $(|B| + 1)^{|A|}$

Theorem

Let A and B be two finite sets. The set of all total functions from A to B, denoted tFun(A, B), has cardinality $|B|^{|A|}$

 $tFun(A,B) \subseteq pFun(A,B) \subseteq Rel(A,B)$

<ロト < 回 > < 三 > < 三 > < 三 > 三 のQC 5/15

Definition A function $f : A \to B$ is **injective** ("one-to-one") iff $\forall a_1, a_2 \in A. f(a_1) = f(a_2) \to a_1 = a_2$

Definition A function $f : A \rightarrow B$ is **injective** ("one-to-one") iff $\forall a_1, a_2 \in A. f(a_1) = f(a_2) \rightarrow a_1 = a_2$

Example

Is the identity function $\iota_A : A \to A$ injective?

Definition A function $f : A \rightarrow B$ is **injective** ("one-to-one") iff $\forall a_1, a_2 \in A. f(a_1) = f(a_2) \rightarrow a_1 = a_2$

Example

Is the identity function $\iota_A : A \to A$ injective? YES

Definition A function $f : A \rightarrow B$ is **injective** ("one-to-one") iff $\forall a_1, a_2 \in A. f(a_1) = f(a_2) \rightarrow a_1 = a_2$

Example

Is the identity function $\iota_A : A \to A$ injective? YES Is the function $\sqrt{\cdot} : \mathbb{R}^+ \to \mathbb{R}^+$ injective?

Definition A function $f : A \to B$ is **injective** ("one-to-one") iff $\forall a_1, a_2 \in A. f(a_1) = f(a_2) \to a_1 = a_2$

Example

Is the identity function $\iota_A : A \to A$ injective? YES Is the function $\sqrt{\cdot} : \mathbb{R}^+ \to \mathbb{R}^+$ injective? YES

Definition A function $f : A \rightarrow B$ is **injective** ("one-to-one") iff $\forall a_1, a_2 \in A. f(a_1) = f(a_2) \rightarrow a_1 = a_2$

Example

Is the identity function $\iota_A : A \to A$ injective? YES Is the function $\sqrt{\cdot} : \mathbb{R}^+ \to \mathbb{R}^+$ injective? YES Is the function $\cdot^2 : \mathbb{R} \to \mathbb{R}$ injective?

Definition A function $f : A \to B$ is **injective** ("one-to-one") iff $\forall a_1, a_2 \in A. f(a_1) = f(a_2) \to a_1 = a_2$

Example

Is the identity function $\iota_A : A \to A$ injective?YESIs the function $\sqrt{\cdot} : \mathbb{R}^+ \to \mathbb{R}^+$ injective?YESIs the function $\cdot^2 : \mathbb{R} \to \mathbb{R}$ injective?NO

Definition

A function $f : A \rightarrow B$ is **injective** ("one-to-one") iff

$$\forall a_1, a_2 \in A. \ f(a_1) = f(a_2) \rightarrow a_1 = a_2$$

Example

Is the identity function $\iota_A : A \to A$ injective? YES Is the function $\sqrt{\cdot} : \mathbb{R}^+ \to \mathbb{R}^+$ injective? YES Is the function $\cdot^2 : \mathbb{R} \to \mathbb{R}$ injective? NO Is the function $\cdot + 1 : \mathbb{R} \to \mathbb{R}$ injective?

4 ロ ト 4 回 ト 4 三 ト 4 三 ト 2 少 3 3 4 6 / 15

Definition

A function $f : A \rightarrow B$ is **injective** ("one-to-one") iff

$$\forall a_1, a_2 \in A. \ f(a_1) = f(a_2) \rightarrow a_1 = a_2$$

Example

Is the identity function $\iota_A : A \to A$ injective?YESIs the function $\sqrt{\cdot} : \mathbb{R}^+ \to \mathbb{R}^+$ injective?YESIs the function $\cdot^2 : \mathbb{R} \to \mathbb{R}$ injective?NOIs the function $\cdot + 1 : \mathbb{R} \to \mathbb{R}$ injective?YES

Definition

A function $f : A \rightarrow B$ is **injective** ("one-to-one") iff

$$\forall a_1, a_2 \in A. \ f(a_1) = f(a_2) \rightarrow a_1 = a_2$$

Example

Is the identity function $\iota_A : A \to A$ injective? YES Is the function $\sqrt{\cdot} : \mathbb{R}^+ \to \mathbb{R}^+$ injective? YES Is the function $\cdot^2 : \mathbb{R} \to \mathbb{R}$ injective? NO Is the function $\cdot + 1 : \mathbb{R} \to \mathbb{R}$ injective? YES Is the function $|\cdot| : \mathbb{R} \to \mathbb{R}$ injective?

Definition

A function $f : A \rightarrow B$ is **injective** ("one-to-one") iff

$$\forall a_1, a_2 \in A. \ f(a_1) = f(a_2) \rightarrow a_1 = a_2$$

Example

 $\begin{array}{ll} \text{Is the identity function } \iota_A : A \to A \text{ injective?} & \text{YES} \\ \text{Is the function } \sqrt{\cdot} : \mathbb{R}^+ \to \mathbb{R}^+ \text{ injective?} & \text{YES} \\ \text{Is the function } \cdot^2 : \mathbb{R} \to \mathbb{R} \text{ injective?} & \text{NO} \\ \text{Is the function } \cdot + 1 : \mathbb{R} \to \mathbb{R} \text{ injective?} & \text{YES} \\ \text{Is the function } |\cdot| : \mathbb{R} \to \mathbb{R} \text{ injective?} & \text{NO} \end{array}$

Definition A function $f : A \to B$ is **surjective** ("onto") iff $\forall b \in B. \exists a \in A. f(a) = b$

Definition A function $f : A \to B$ is **surjective** ("onto") iff $\forall b \in B. \exists a \in A. f(a) = b$

Example

Is the identity function $\iota_A : A \to A$ surjective?

Definition A function $f : A \rightarrow B$ is **surjective** ("onto") iff $\forall b \in B. \exists a \in A. f(a) = b$

Example

Is the identity function $\iota_A : A \to A$ surjective? YES

Definition

A function $f : A \rightarrow B$ is surjective ("onto") iff

 $\forall b \in B. \exists a \in A. f(a) = b$

Example

Is the identity function $\iota_A : A \to A$ surjective? YES Is the function $\sqrt{\cdot} : \mathbb{R}^+ \to \mathbb{R}^+$ surjective?

Definition

A function $f : A \rightarrow B$ is surjective ("onto") iff

 $\forall b \in B. \exists a \in A. f(a) = b$

Example

Is the identity function $\iota_A : A \to A$ surjective? YES Is the function $\sqrt{\cdot} : \mathbb{R}^+ \to \mathbb{R}^+$ surjective? YES

Definition

A function $f : A \rightarrow B$ is surjective ("onto") iff

 $\forall b \in B. \exists a \in A. f(a) = b$

Example

Is the identity function $\iota_A : A \to A$ surjective? YES Is the function $\sqrt{\cdot} : \mathbb{R}^+ \to \mathbb{R}^+$ surjective? YES Is the function $\cdot^2 : \mathbb{R} \to \mathbb{R}$ surjective?

Definition

A function $f : A \rightarrow B$ is surjective ("onto") iff

 $\forall b \in B. \exists a \in A. f(a) = b$

Example

Is the identity function $\iota_A : A \to A$ surjective?YESIs the function $\sqrt{\cdot} : \mathbb{R}^+ \to \mathbb{R}^+$ surjective?YESIs the function $\cdot^2 : \mathbb{R} \to \mathbb{R}$ surjective?NO

Definition

A function $f : A \rightarrow B$ is **surjective** ("onto") iff

 $\forall b \in B. \exists a \in A. f(a) = b$

Example

Is the identity function $\iota_A : A \to A$ surjective? YES Is the function $\sqrt{\cdot} : \mathbb{R}^+ \to \mathbb{R}^+$ surjective? YES Is the function $\cdot^2 : \mathbb{R} \to \mathbb{R}$ surjective? NO Is the function $\cdot + 1 : \mathbb{R} \to \mathbb{R}$ surjective?

4 ロ ト 4 回 ト 4 三 ト 4 三 ト 2 9 4 で
7/15

Definition

A function $f : A \rightarrow B$ is **surjective** ("onto") iff

 $\forall b \in B. \exists a \in A. f(a) = b$

Example

Is the identity function $\iota_A : A \to A$ surjective?YESIs the function $\sqrt{\cdot} : \mathbb{R}^+ \to \mathbb{R}^+$ surjective?YESIs the function $\cdot^2 : \mathbb{R} \to \mathbb{R}$ surjective?NOIs the function $\cdot + 1 : \mathbb{R} \to \mathbb{R}$ surjective?YES

4 ロ ト 4 部 ト 4 注 ト 4 注 ト 2 少 4 で
7 / 15

Definition

A function $f : A \rightarrow B$ is **surjective** ("onto") iff

 $\forall b \in B. \exists a \in A. f(a) = b$

Example

Is the identity function $\iota_A : A \to A$ surjective? YES Is the function $\sqrt{\cdot} : \mathbb{R}^+ \to \mathbb{R}^+$ surjective? YES Is the function $\cdot^2 : \mathbb{R} \to \mathbb{R}$ surjective? NO Is the function $\cdot + 1 : \mathbb{R} \to \mathbb{R}$ surjective? YES Is the function $|\cdot| : \mathbb{R} \to \mathbb{R}$ surjective?

Definition

A function $f : A \rightarrow B$ is **surjective** ("onto") iff

 $\forall b \in B. \exists a \in A. f(a) = b$

Example

 $\begin{array}{ll} \text{Is the identity function } \iota_A : A \to A \text{ surjective}? & \text{YES} \\ \text{Is the function } \sqrt{\cdot} : \mathbb{R}^+ \to \mathbb{R}^+ \text{ surjective}? & \text{YES} \\ \text{Is the function } \cdot^2 : \mathbb{R} \to \mathbb{R} \text{ surjective}? & \text{NO} \\ \text{Is the function } \cdot + 1 : \mathbb{R} \to \mathbb{R} \text{ surjective}? & \text{YES} \\ \text{Is the function } |\cdot| : \mathbb{R} \to \mathbb{R} \text{ surjective}? & \text{NO} \end{array}$

4 ロ ト 4 回 ト 4 三 ト 4 三 ト 2 少 4 で
7/15

Definition

A function $f : A \rightarrow B$ is **bijective** ("one-to-one correspondence") iff it is both injective and surjective

Definition

A function $f : A \rightarrow B$ is **bijective** ("one-to-one correspondence") iff it is both injective and surjective

Example

Is the identity function $\iota_A : A \to A$ bijective?

Definition

A function $f : A \rightarrow B$ is **bijective** ("one-to-one correspondence") iff it is both injective and surjective

Example

Is the identity function $\iota_A : A \to A$ bijective? YES

Definition

A function $f : A \rightarrow B$ is **bijective** ("one-to-one correspondence") iff it is both injective and surjective

Example

Is the identity function $\iota_A : A \to A$ bijective? YES

イロト イポト イヨト イヨト 二日

8/15

Is the function $\sqrt{\cdot}: \mathbb{R}^+ \to \mathbb{R}^+$ bijective?

Definition

A function $f : A \rightarrow B$ is **bijective** ("one-to-one correspondence") iff it is both injective and surjective

Example

Is the identity function $\iota_A : A \to A$ bijective?YESIs the function $\sqrt{\cdot} : \mathbb{R}^+ \to \mathbb{R}^+$ bijective?YES

Definition

A function $f : A \rightarrow B$ is **bijective** ("one-to-one correspondence") iff it is both injective and surjective

Example

Is the identity function $\iota_A : A \to A$ bijective? YES Is the function $\sqrt{\cdot} : \mathbb{R}^+ \to \mathbb{R}^+$ bijective? YES Is the function $\cdot^2 : \mathbb{R} \to \mathbb{R}$ bijective?

Definition

A function $f : A \rightarrow B$ is **bijective** ("one-to-one correspondence") iff it is both injective and surjective

Is the identity function $\iota_A: A o A$ bijective?	YES
Is the function $\sqrt{\cdot}:\mathbb{R}^+ o\mathbb{R}^+$ bijective?	YES
Is the function $\cdot^2 : \mathbb{R} \to \mathbb{R}$ bijective?	NO

Definition

A function $f : A \rightarrow B$ is **bijective** ("one-to-one correspondence") iff it is both injective and surjective

Is the identity function $\iota_A: A \to A$ bijective?	YES
Is the function $\sqrt{\cdot}:\mathbb{R}^+ o\mathbb{R}^+$ bijective?	YES
Is the function $\cdot^2:\mathbb{R} o\mathbb{R}$ bijective?	NO
Is the function $\cdot + 1 : \mathbb{R} \to \mathbb{R}$ bijective?	

Definition

A function $f : A \rightarrow B$ is **bijective** ("one-to-one correspondence") iff it is both injective and surjective

Is the identity function $\iota_{\mathcal{A}}: \mathcal{A} ightarrow \mathcal{A}$ bijective?	YES
Is the function $\sqrt{\cdot}:\mathbb{R}^+ o\mathbb{R}^+$ bijective?	YES
Is the function $\cdot^2:\mathbb{R} o\mathbb{R}$ bijective?	NO
Is the function $\cdot +1:\mathbb{R} o\mathbb{R}$ bijective?	YES

Definition

A function $f : A \rightarrow B$ is **bijective** ("one-to-one correspondence") iff it is both injective and surjective

Is the identity function $\iota_A: A \to A$ bijective?	YES
Is the function $\sqrt{\cdot}:\mathbb{R}^+ o\mathbb{R}^+$ bijective?	YES
Is the function $\cdot^2:\mathbb{R} o\mathbb{R}$ bijective?	NO
Is the function $\cdot + 1: \mathbb{R} o \mathbb{R}$ bijective?	YES
Is the function $ \cdot :\mathbb{R} ightarrow\mathbb{R}$ bijective?	

Definition

A function $f : A \rightarrow B$ is **bijective** ("one-to-one correspondence") iff it is both injective and surjective

Example

Is the identity function $\iota_{\mathcal{A}}: \mathcal{A} ightarrow \mathcal{A}$ bijective?	YES
Is the function $\sqrt{\cdot}:\mathbb{R}^+ o\mathbb{R}^+$ bijective?	YES
Is the function $\cdot^2:\mathbb{R} o\mathbb{R}$ bijective?	NO
Is the function $\cdot +1:\mathbb{R} ightarrow \mathbb{R}$ bijective?	YES
Is the function $ \cdot :\mathbb{R} o\mathbb{R}$ bijective?	NO

3

イロト イポト イヨト イヨト

Definition

Let $f : B \to C$ and $g : A \to B$. The composition function $f \circ g$ is defined by $f \circ g : A \to C$ with $f \circ g(a) = f(g(a))$

The common notation differs between functions and relations. For functions $f \circ g$ means "first apply g, and then apply f". For relations $R_1 \circ R_2$ means "first R_1 , and then R_2 "

イロト イポト イヨト イヨト

Theorem

The composition of two functions yields a function

Theorem

The composition of two functions yields a function

Theorem

The composition of two injective functions yields an injective function

Theorem

The composition of two functions yields a function

Theorem

The composition of two injective functions yields an injective function

Theorem

The composition of two surjective functions yields a surjective function

Theorem

The composition of two functions yields a function

Theorem

The composition of two injective functions yields an injective function

Theorem

The composition of two surjective functions yields a surjective function

Corollary

The composition of two surjective functions yields a surjective function

Inverse function

Definition

If $f : A \to B$ is a bijection, then the **inverse** of f, denoted f^{-1} is defined as the function $f^{-1} : B \to A$ such that $f^{-1}(b) = a$ iff f(a) = b

Example What is the inverse of $\iota_A : A \to A$?

Inverse function

Definition

If $f : A \to B$ is a bijection, then the **inverse** of f, denoted f^{-1} is defined as the function $f^{-1} : B \to A$ such that $f^{-1}(b) = a$ iff f(a) = b

Example

What is the inverse of $\iota_A : A \to A$? What is the inverse of $\sqrt{:}\mathbb{R}^+ \to \mathbb{R}^+$?

Inverse function

Definition

If $f : A \to B$ is a bijection, then the **inverse** of f, denoted f^{-1} is defined as the function $f^{-1} : B \to A$ such that $f^{-1}(b) = a$ iff f(a) = b

Example

What is the inverse of $\iota_A : A \to A$? What is the inverse of $\sqrt{:}\mathbb{R}^+ \to \mathbb{R}^+$? What is the inverse of $\cdot + 1 : \mathbb{R} \to \mathbb{R}$?

The floor and ceiling functions

Definition

The floor function assigns to the real number x the largest integer that is less than or equal to x. The value of the floor function at x is denoted by $\lfloor x \rfloor$

Definition

The ceiling function assigns to the real number x the smallest integer that is greater than or equal to x. The value of the ceiling function at x is denoted by $\lceil x \rceil$

$$\left\lfloor \frac{1}{2} \right\rfloor = \left\lceil -\frac{1}{2} \right\rceil = \lfloor 0 \rfloor = \lceil 0 \rceil$$

Useful properties of the floor and ceiling functions

Let $n \in \mathbb{N}$ and $x \in \mathbb{R}$.

(1a)
$$\lfloor x \rfloor = n \text{ iff } n \le x < n+1$$

(1b) $\lceil x \rceil = n \text{ iff } n-1 < x \le n$
(1c) $\lfloor x \rfloor = n \text{ iff } x-1 < n \le x$
(1c) $\lceil x \rceil = n \text{ iff } x \le n < x+1$

(2)
$$x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$$

(3a) $\lfloor -x \rfloor = -\lceil x \rceil$ (3b) $\lceil -x \rceil = -\lfloor x \rfloor$

(4a) $\lfloor x + n \rfloor = \lfloor x \rfloor + n$ (4b) $\lceil x + n \rceil = \lceil x \rceil + n$

Exercise

Prove that

$$\forall x \in \mathbb{R}. \ \lfloor 2x \rfloor = \lfloor x \rfloor + \lfloor x + 1/2 \rfloor$$

<ロ > < 部 > < 言 > < 言 > こ > < こ > こ ? へ () 14/15

The factorial function

Definition

The factorial function $f : \mathbb{N} \to \mathbb{N}$, denoted as f(n) = n! assigns to n the product of the first n positive integers

$$f(0) = 0! = 1$$

and

$$f(n) = n! = 1 \cdot 2 \cdot \cdots \cdot (n-1) \cdot n$$