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Functions as relations

A relation is a function iff each element of its domain is related to
at most one element of its codomain

Definition

Let A and B be two nonempty sets. A relation f C A x B is called
a partial function from A to B iff

Vae€ A.Vb,ce B. (a,b) e fA(a,c)ef - b=c
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Example

Consider the function v/ : R — R.

« D= (R U{0})
Note that the domain of a function, and its domain of
definition do not necessarily coincide
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Example

Consider the function v/ : R — R.

« D= (R U{0})
Note that the domain of a function, and its domain of
definition do not necessarily coincide

e VR = (R U{0})
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Total functions

Definition

A partial function f : A — B is called a total function? iff every
element in A is related to exactly one element in B, i.e.

Vac A. dbe B. f(a)=0b

When we will say a function, we will mean a total function
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Total functions

Definition
A partial function f : A — B is called a total function? iff every
element in A is related to exactly one element in B, i.e.

Vac A 3be B. f(a)=b
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Cardinality

Let A and B be two finite sets. The set of all relations from A to
B, denoted Rel(A, B), has cardinality 2BIIA|

«0O» «F>»
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Cardinality

Theorem

Let A and B be two finite sets. The set of all relations from A to
B, denoted Rel(A, B), has cardinality 2BIIA|

Theorem

Let A and B be two finite sets. The set of all partial functions
from A to B, denoted pFun(A, B), has cardinality (|B| + 1)
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Injective functions

A function f : A — B is injective (“one-to-one") iff

Vai,ap € A f(a1) =f(a2) = a1 = a»

«0O0» «F»r» « >

«E>»
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Injective functions
Definition

A function f : A — B is injective ( “one-to-one”) iff

Val,ag € A. f(al) = f(ag) — a1 = a2
Example

Is the identity function t4 : A — A injective?
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Surjective functions

A function f : A — B is surjective (“onto”) iff

Vbe B.Jac A f(a)=b

«O0)» «F)» « =>»

« =)
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Bijective functions

A function f : A — B is bijective (“one-to-one correspondence”)
iff it is both injective and surjective
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Function composition

Definition

Let f: B— C and g : A— B. The composition function f o g is
defined by fo g : A — C with f o g(a) = f(g(a))

)

The common notation differs between functions and relations.

For
functions f o g means “first apply g, and then apply . For
relations R; o R» means “first Ry, and then Ry"

=

Q C
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Function composition

The composition of two functions yields a function I

«O0)» «F)» « =>»

« =
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Function composition

The composition of two functions yields a function |

function

The composition of two injective functions yields an injective

function
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Function composition

The composition of two functions yields a function

Theorem J

Theorem

The composition of two injective functions yields an injective
function

Theorem

The composition of two surjective functions yields a surjective
function

Corollary

The composition of two surjective functions yields a surjective
function
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Inverse function

Definition

If f: A— B is a bijection, then the inverse of f, denoted f—!

defined as the function f~! : B — A such that f~1(b) = a iff
f(a)=0>b

is

Example
What is the inverse of 14 : A — A?
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Definition
If f: A— B is a bijection, then the inverse of f, denoted f~1 is
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The floor and ceiling functions

Definition

The floor function assigns to the real number x the largest integer
that is less than or equal to x. The value of the floor function at x
is denoted by | x|

<

Definition

The ceiling function assigns to the real number x the smallest
integer that is greater than or equal to x. The value of the ceiling
function at x is denoted by [x]

Example

5| =]3| o=
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Useful properties of the floor and ceiling functions

Let n € N and x € R.

(la) |x]=niffn<x<n+1
(Ib) [x]=niffn—1<x<n
(Ie) |x]=niffx—1<n<x
(Ie) [x]=niffx<n<x+1

o = = = =z 9ace
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Exercise

«O> 4P o<

Q>
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The factorial function

Definition
The factorial function f : N — N, denoted as f(n) = n! assigns to
n the product of the first n positive integers
f0)=0! =1
and

f(n)=n'=1-2
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