Relations¹

Myrto Arapinis

School of Informatics University of Edinburgh

September 25, 2014

□ > < □ > < Ξ > < Ξ > < Ξ > Ξ < つへで 1/18

Relations

Definition

Given sets A and B, $R \subseteq A \times B$ is a binary relation from A to B, denoted $R : A \rightarrow B$

- *R* is a set of ordered pairs, *i.e.* $R \in \mathcal{P}(A \times B)$
- A is called the domain of R
- B is called the codomain of R
- We write aRb whenever $(a, b) \in R$
- If B = A, R is called a relation on A

Relations

Definition

Given sets A and B, $R \subseteq A \times B$ is a binary relation from A to B, denoted $R : A \rightarrow B$

- *R* is a set of ordered pairs, *i.e.* $R \in \mathcal{P}(A \times B)$
- A is called the domain of R
- B is called the codomain of R
- We write aRb whenever $(a, b) \in R$
- If B = A, R is called a relation on A

Definition

Given sets A_1, \ldots, A_n , a subset $R \subseteq A_1 \times \cdots \times A_n$ is an *n*-ary relation

Informal examples

- Computation
- Typing
- Program equivalence

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

3/18

- Networks
- Databases

Empty relation -

- $\emptyset: A \to B$
- $\forall a \in A. \ \forall b \in B. \ \neg(a \emptyset b)$

Empty relation -

- $\emptyset: A \to B$
- $\forall a \in A. \ \forall b \in B. \ \neg(a \emptyset b)$

Full relation -

- $A \times B : A \rightarrow B$
- $\forall a \in A. \ \forall b \in B. \ a(A \times B)b$

Empty relation -

- $\emptyset : A \to B$
- $\forall a \in A. \ \forall b \in B. \ \neg(a \emptyset b)$

Full relation -

- $A \times B : A \rightarrow B$
- $\forall a \in A. \ \forall b \in B. \ a(A \times B)b$

Identity relation -

- $I_A: A \to A$
- $I_A = \{(a, a) \mid a \in A\}$
- $\forall a_1, a_2 \in A$. $((a_1I_Aa_2) \leftrightarrow (a_1 = a_2))$

4/18

Empty relation -

- $\emptyset: A \to B$
- $\forall a \in A. \ \forall b \in B. \ \neg(a \emptyset b)$

Full relation -

- $A \times B : A \rightarrow B$
- $\forall a \in A. \ \forall b \in B. \ a(A \times B)b$

Identity relation -

- $I_A: A \to A$
- $I_A = \{(a, a) \mid a \in A\}$
- $\forall a_1, a_2 \in A$. $((a_1I_Aa_2) \leftrightarrow (a_1 = a_2))$

Divides relation -

•
$$|: \mathbb{Z}^+ \to \mathbb{Z}^+$$

• $|= \{(n, m) \mid \exists k \in \mathbb{Z}^+ . \ m = kn\}$
• $\forall n, m \in \mathbb{Z}^+ . \ ((n \mid m) \leftrightarrow (\exists k \in \mathbb{Z}^+ . \ m = kn))$

A binary relation $R: A \rightarrow A$ is called

• reflexive iff $\forall x \in A$. $(x, x) \in R$

Examples \leq , =, and | are reflexive, but < is not

A binary relation $R: A \rightarrow A$ is called

• reflexive iff
$$\forall x \in A$$
. $(x, x) \in R$

Examples \leq , =, and | are reflexive, but < is not

symmetric iff ∀x, y ∈ A. ((x, y) ∈ R → (y, x) ∈ R)
 Examples = is symmetric, but ≤, <, and | are not

A binary relation $R: A \rightarrow A$ is called

• reflexive iff
$$\forall x \in A$$
. $(x, x) \in R$

Examples \leq , =, and | are reflexive, but < is not

- symmetric iff ∀x, y ∈ A. ((x, y) ∈ R → (y, x) ∈ R)
 Examples = is symmetric, but ≤, <, and | are not
- antisymmetric iff
 ∀x, y ∈ A. (((x, y) ∈ R ∧ (y, x) ∈ R) → x = y)
 Examples ≤, =, <, and | are antisymmetric

5/18

A binary relation $R: A \rightarrow A$ is called

• reflexive iff
$$\forall x \in A$$
. $(x, x) \in R$

Examples \leq , =, and | are reflexive, but < is not

- symmetric iff ∀x, y ∈ A. ((x, y) ∈ R → (y, x) ∈ R)
 Examples = is symmetric, but ≤, <, and | are not
- antisymmetric iff
 ∀x, y ∈ A. (((x, y) ∈ R ∧ (y, x) ∈ R) → x = y)
 Examples ≤, =, <, and | are antisymmetric
- transitive iff

 $\forall x, y, z \in A. (((x, y) \in R \land (y, z) \in R) \rightarrow (x, z) \in R)$

Examples \leq , =, <, and | are transitive

Since relations are sets, they can be combined with normal set operations, *e.g.* $< \cup =$ is equal to \leq , and $\leq \cap \geq$ is equal to =. Moreover, relations can be composed.

Definition

Let $R_1 : A \to B$ and $R_2 : B \to C$. Then R_1 is composable with R_2 . The composition is defined by

$$R_1 \circ R_2 \stackrel{\text{def}}{=} \{ (x, z) \in A \times C \mid \exists y \in B. \ ((x, y) \in R_1 \land (y, z) \in R_2) \}$$

Since relations are sets, they can be combined with normal set operations, *e.g.* $< \cup =$ is equal to \leq , and $\leq \cap \geq$ is equal to =. Moreover, relations can be composed.

Definition

Let $R_1 : A \to B$ and $R_2 : B \to C$. Then R_1 is composable with R_2 . The composition is defined by

$$R_1 \circ R_2 \stackrel{\text{def}}{=} \{(x, z) \in A \times C \mid \exists y \in B. \ ((x, y) \in R_1 \land (y, z) \in R_2)\}$$

Example If $A = B = C = \mathbb{Z}$, then $> \circ > =$

Since relations are sets, they can be combined with normal set operations, *e.g.* $< \cup =$ is equal to \leq , and $\leq \cap \geq$ is equal to =. Moreover, relations can be composed.

Definition

Let $R_1 : A \to B$ and $R_2 : B \to C$. Then R_1 is composable with R_2 . The composition is defined by

$$R_1 \circ R_2 \stackrel{\text{def}}{=} \{(x, z) \in A \times C \mid \exists y \in B. \ ((x, y) \in R_1 \land (y, z) \in R_2)\}$$

Example If $A = B = C = \mathbb{Z}$, then $> \circ > = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x \ge y + 2\}$

Since relations are sets, they can be combined with normal set operations, *e.g.* $< \cup =$ is equal to \leq , and $\leq \cap \geq$ is equal to =. Moreover, relations can be composed.

Definition

Let $R_1 : A \to B$ and $R_2 : B \to C$. Then R_1 is composable with R_2 . The composition is defined by

$$R_1 \circ R_2 \stackrel{\text{def}}{=} \{ (x,z) \in A \times C \mid \exists y \in B. \ ((x,y) \in R_1 \land (y,z) \in R_2) \}$$

 $\underline{\mathsf{Example}} \ \mathsf{If} \ A = B = C = \mathbb{Z}, \ \mathsf{then} > \circ > = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x \geq y + 2\}$

Example If $A = B = C = \mathbb{R}$, then $> \circ > =$

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 今 Q (で 6 / 18

Since relations are sets, they can be combined with normal set operations, *e.g.* $< \cup =$ is equal to \leq , and $\leq \cap \geq$ is equal to =. Moreover, relations can be composed.

Definition

Let $R_1 : A \to B$ and $R_2 : B \to C$. Then R_1 is composable with R_2 . The composition is defined by

$$R_1 \circ R_2 \stackrel{\text{def}}{=} \{ (x,z) \in A \times C \mid \exists y \in B. \ ((x,y) \in R_1 \land (y,z) \in R_2) \}$$

 $\underline{\mathsf{Example}} \ \mathsf{If} \ A = B = C = \mathbb{Z}, \ \mathsf{then} > \circ > = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x \geq y + 2\}$

Example If $A = B = C = \mathbb{R}$, then $> \circ > = >$

4 ロ ト 4 団 ト 4 臣 ト 4 臣 ト 臣 の Q ()
6 / 18

Theorem

Relational composition is associative and has the identity relation as neutral element

• Associativity - (proof on the board) $\forall R : A \rightarrow B, S : B \rightarrow C, T : C \rightarrow D, (T \circ S) \circ R = T \circ (S \circ R)$

Neutral element - (pro

(proof on the board)

$$\forall R : A \rightarrow B, R \circ I_A = R = I_B \circ R$$

Theorem

Relational composition is associative and has the identity relation as neutral element

- Associativity (proof on the board) $\forall R : A \rightarrow B, S : B \rightarrow C, T : C \rightarrow D, (T \circ S) \circ R = T \circ (S \circ R)$
- Neutral element -

(proof on the board)

$$\forall R: A \to B, \ R \circ I_A = R = I_B \circ R$$

Corollary

For every set A, the structure $(\mathcal{P}(A \times A), I_A, \circ)$ is a monoid

4 ロ ト 4 部 ト 4 注 ト 4 注 ト 2 少 4 で
7/18

Powers of a relation

Definition

Given a relation $R \subseteq A \times A$ on A, its powers are defined inductively by Base step: $R^0 = I_A$ Induction step: $R^{n+1} = R^n \circ R$

Powers of a relation

Definition Given a relation $R \subseteq A \times A$ on A, its powers are defined inductively by Base step: $R^0 = I_A$ Induction step: $R^{n+1} = R^n \circ R$

If R is a transitive relation, then its powers are contained in R itself. Moreover, the reverse implication also holds.

Theorem

A relation R on a set A is transitive iff $R^n \subseteq R$ for all n = 1, 2, ...

Equivalence relations

Definition

A relation R on a set A is called an equivalence relation iff it is reflexive, symmetric and transitive

Equivalence relations

Definition

A relation R on a set A is called an equivalence relation iff it is reflexive, symmetric and transitive

Example Let Σ^* be the set of strings over alphabet Σ . Let $\overline{R \subseteq \Sigma^* \times \Sigma^*}$ be a relation on strings defined as follows $R = \{(s, t) \in \Sigma^* \times \Sigma^* \mid |s| = |t|\}$. *R* is an equivalence relation (proof on the board)

Equivalence relations

Definition

A relation R on a set A is called an equivalence relation iff it is reflexive, symmetric and transitive

Example Let Σ^* be the set of strings over alphabet Σ . Let $\overline{R \subseteq \Sigma^* \times \Sigma^*}$ be a relation on strings defined as follows $R = \{(s, t) \in \Sigma^* \times \Sigma^* \mid |s| = |t|\}$. *R* is an equivalence relation (proof on the board)

 $\underline{\text{Example}}_{\text{equivalence relation}} \text{Let } R = \{(n, m) \in \mathbb{Z}^+ \times \mathbb{Z}^+ \mid n \mid m\}. R \text{ is not an} \\ (proof on the board)$

Congruence modulo *m*

Let m > 1 be an integer, and $R = \{(a, b) \mid a = b \pmod{m}\}$. R is an equivalence on the set of integers

Equivalence classes

Definition

Let R be an equivalence relation on a set A and $a \in A$. Let

$$[a]_R = \{s \mid (a,s) \in R\}$$

be the equivalence class of a w.r.t. R, *i.e.* all elements of A that are R-equivalent to a

If $b \in [a]_R$ then b is called a representative of the equivalence class. Every member of the class can be a representative

Theorem

Theorem

Let R be an equivalence on A and $a, b \in A$. The following three statements are equivalent

- 1. *aRb*
- 2. $[a]_R = [b]_R$
- 3. $[a]_R \cap [b]_R \neq \emptyset$

(proof on the board)

Partitions of a set

Definition

A partition of a set A is a collection of disjoint, nonempty subsets that have A as their union. In other words, the collection of subsets $A_i \subseteq A$ with $i \in I$ (where I is an index set) forms a partition of A iff

1.
$$A_i \neq \emptyset$$
 for all $i \in I$
2. $A_i \cap A_j = \emptyset$ for all $i \neq j \in I$
3. $\bigcup_{i \in I} A_i = A$

Theorem

Theorem

- 1. If R is an equivalence on A, then the equivalence classes of R form a partition of A
- 2. Conversely, given a partition $\{A_i \mid i \in I\}$ of A there exists an equivalence relation R that has exactly the sets A_i , iI, as its equivalence classes

(proof on the board)

Definition

A relation R on a set A is called a partial order iff it is reflexive, antisymmetric and transitive. If R is a partial order, we call (A, R) a partially ordered set, or

poset.

Definition

A relation R on a set A is called a partial order iff it is reflexive, antisymmetric and transitive. If R is a partial order, we call (A, R) a partially ordered set, or poset.

Example \leq is a partial order, but < is not (since it is not reflexive)

Definition

A relation R on a set A is called a partial order iff it is reflexive, antisymmetric and transitive. If R is a partial order, we call (A, R) a partially ordered set, or poset.

<u>Example</u> \leq is a partial order, but < is not (since it is not reflexive) Example The relation | is a partial order, *i.e.* (\mathbb{Z}^+ , |) is a poset

Definition

A relation R on a set A is called a partial order iff it is reflexive, antisymmetric and transitive. If R is a partial order, we call (A, R) a partially ordered set, or poset.

<u>Example</u> ≤ is a partial order, but < is not (since it is not reflexive) <u>Example</u> The relation | is a partial order, *i.e.* (\mathbb{Z}^+ , |) is a poset Example Set inclusion ⊆ is partial order, *i.e.* (2^A , ⊆) is a poset

Comparability and total orders

Definition

Two elements a and b of a poset (S, R) are called comparable iff aRb or bRa holds. Otherwise they are called incomparable

Definition

If (S, R) is a poset where every two elements are comparable, then S is called a totally ordered or linearly ordered set and the relation R is called a total order or linear order

Let (S, \preceq) be a poset and $S^n = S \times S \times \ldots \times S$ (*n* times) The standard extension of the partial order to tuples in S^n is defined by

$$(x_1,\ldots,x_n) \preceq (y_1,\ldots,y_n) \leftrightarrow \forall i \in \{1,\ldots,n\}. \ x_i \preceq y_i$$

Let (S, \preceq) be a poset and $S^n = S \times S \times \ldots \times S$ (*n* times) The standard extension of the partial order to tuples in S^n is defined by

$$(x_1,\ldots,x_n) \preceq (y_1,\ldots,y_n) \leftrightarrow \forall i \in \{1,\ldots,n\}. x_i \preceq y_i$$

Exercise Prove that this defines a partial order.

Let (S, \preceq) be a poset and $S^n = S \times S \times \ldots \times S$ (*n* times) The standard extension of the partial order to tuples in S^n is defined by

$$(x_1,\ldots,x_n) \preceq (y_1,\ldots,y_n) \leftrightarrow \forall i \in \{1,\ldots,n\}. x_i \preceq y_i$$

Exercise Prove that this defines a partial order.

<u>Note</u> Even if (S, \leq) is totally ordered, the extension to S^n is not necessarily a total order. Consider (\mathbb{N}, \leq) .

Let (S, \preceq) be a poset and $S^n = S \times S \times \ldots \times S$ (*n* times) The standard extension of the partial order to tuples in S^n is defined by

$$(x_1,\ldots,x_n) \preceq (y_1,\ldots,y_n) \leftrightarrow \forall i \in \{1,\ldots,n\}. x_i \preceq y_i$$

Exercise Prove that this defines a partial order.

<u>Note</u> Even if (S, \leq) is totally ordered, the extension to S^n is not necessarily a total order. Consider (\mathbb{N}, \leq) . Then $(2,1) \leq (1,2) \leq (2,1)$

Extending orders to tuples: Lexicographic

Let (S, \preceq) be a poset and $S^n = S \times S \times \ldots \times S$ (*n* times). The lexicographic order on tuples in S^n is defined by

$$(x_1, \ldots, x_n) \prec_{lex} (y_1, \ldots, y_n) \leftrightarrow \exists i \in \{1, \ldots, n\}. \forall k < i. x_k = y_k \land x_i \prec y_i$$
$$(x_1, \ldots, x_n) \preceq_{lex} (y_1, \ldots, y_n) \text{ iff } (x_1, \ldots, x_n) \prec_{lex} (y_1, \ldots, y_n) \text{ or}$$
$$(x_1, \ldots, x_n) = (y_1, \ldots, y_n)$$

Extending orders to tuples: Lexicographic

Let (S, \leq) be a poset and $S^n = S \times S \times \ldots \times S$ (*n* times). The lexicographic order on tuples in S^n is defined by

$$(x_1,\ldots,x_n) \prec_{lex} (y_1,\ldots,y_n) \leftrightarrow \exists i \in \{1,\ldots,n\}. \forall k < i. x_k = y_k \land x_i \prec y_i$$

$$(x_1, ..., x_n) \preceq_{lex} (y_1, ..., y_n)$$
 iff $(x_1, ..., x_n) \prec_{lex} (y_1, ..., y_n)$ or $(x_1, ..., x_n) = (y_1, ..., y_n)$

Lemma

If (S, \preceq) is totally ordered then $(S^n, \preceq_{\mathit{lex}})$ is totally ordered