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Relations

Definition
Given sets A and B, R C A x B is a binary relation from A to B,
denoted R: A — B

e R is a set of ordered pairs, i.e. R € P(A x B)
A is called the domain of R

B is called the codomain of R

We write aRb whenever (a,b) € R

If B= A, R is called a relation on A
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Relations

Definition
Given sets A and B, R C A x B is a binary relation from A to B,
denoted R: A — B

e R is a set of ordered pairs, i.e. R € P(A x B)
A is called the domain of R

B is called the codomain of R

We write aRb whenever (a,b) € R

If B= A, R is called a relation on A

Definition
Given sets A;1,...,Ap,a subset R C A; X --- X A, is an n-ary
relation
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Informal examples

Computation

Typing

Program equivalence

Networks

Databases

o = = = = o
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EXamples

Empty relation -
° @ A B

e Vaec A.Vbe B. ﬁ(awb)

4/18



Examples

Empty relation -

e D:A—B

e Yae A. Vb e B. —(alb)
Full relation -

e AxB:A— B

e Vac A Vbe B. a(Ax B)b
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Examples

Empty relation -

e D:A—B

e Vac A Vb e B. =(allb)
Full relation -

e AxB:A— B

e Vac A Vbe B. a(Ax B)b
Identity relation -

e Ip: A=A

o Ip={(a,a)| ac A}

o Va,ax € A. ((a1laa2) <> (a1 = a))
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Examples

Empty relation -

° @ cA— B

e Yac A Vb e B. =(alb)
Full relation -

e AxB:A—>B

e Vac A Vbe B. a(Ax B)b
Identity relation -

o Ip: A=A

o Ip={(a,a)| ac A}

o Vaj,ax € A. ((a1laa2) < (a1 = a2))
Divides relation -

° ‘: 7T = 7t

o |={(n,m) |3k € Z*. m= kn}

eVnmeZt. (n|m)«< (3keZ". m= kn)) _
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Properties of binary relations

A binary relation R : A — A is called

o reflexive iff Vx € A. (x,x) € R

Examples <, =, and | are reflexive, but < is not
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Properties of binary relations

A binary relation R : A — A is called

o reflexive iff Vx € A. (x,x) € R
Examples <, =, and | are reflexive, but < is not

e symmetric iff Vx,y € A. ((x,¥) € R — (y,x) € R)

Examples = is symmetric, but <, <, and | are not
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Properties of binary relations
A binary relation R : A — A is called
o reflexive iff Vx € A. (x,x) € R

Examples <, =, and | are reflexive, but < is not

e symmetric iff Vx,y € A. ((x,¥) € R — (y,x) € R)
Examples = is symmetric, but <, <, and | are not
e antisymmetric iff
v,y € A ((x,y) ERA(y,x) ER) = x=y)

Examples <, =, <, and | are antisymmetric
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Properties of binary relations

A binary relation R : A — A is called
o reflexive iff Vx € A. (x,x) € R

Examples <, =, and | are reflexive, but < is not

e symmetric iff Vx,y € A. ((x,¥) € R — (y,x) € R)

Examples = is symmetric, but <, <, and | are not

e antisymmetric iff
Vx,y € A (((x,y) e RA(y,x) €ER) — x=1y)

Examples <, =, <, and | are antisymmetric

e transitive iff
Vx,y,z€ A. (((x,y) e RA(y,z) € R) — (x,z) €R)

Examples <, =, <, and | are transitive
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Combining relations

Since relations are sets, they can be combined with normal set
operations, e.g. < U = is equal to <, and <N > is equal to =.
Moreover, relations can be composed.

Definition

Let R, : A— B and R, : B— C.Then R; is composable with R».
The composition is defined by

RioR ¥ {(x,2) e Ax C|Ty e B. ((x,y) € RLA(y,2) € R)}
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Combining relations

Since relations are sets, they can be combined with normal set
operations, e.g. < U = is equal to <, and <N > is equal to =.
Moreover, relations can be composed.

Definition
Let R, : A— B and R, : B— C.Then R; is composable with R».
The composition is defined by

RioR ¥ {(x,2) e Ax C|Ty e B. ((x,y) € RLA(y,2) € R)}

Example If A=B=C=12Z,then >0>={(x,y) €EZXZ|x>y+2}

Example f A= B =C =R, then >0 > = >
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Theorem

Relational composition is associative and has the identity relation
as neutral element

e Associativity -

(proof on the board)
VR:A—-B,S:B—C, T:C— D, (ToS)oR= To(S0R)

e Neutral element -

(proof on the board)
VR:A— B, Rolpa=R=1IgoR



Theorem

Relational composition is associative and has the identity relation
as neutral element

e Associativity - (proof on the board)

VR:A—-B,S:B—C, T:C— D, (ToS)oR= To(S0R)

e Neutral element - (proof on the board)

VR:A— B, Rolp=R=1IgoR

Corollary
For every set A, the structure (P(A x A), Ia,0) is a monoid J
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Powers of a relation

Given a relation R C A x A on A, its powers are defined inductively
by

Base step: RO = I,
Induction step: R"' = R"o R

<O> <> <> «E»
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Powers of a relation

Definition

Given a relation R C A x A on A, its powers are defined inductively
by

Base step: RO = I4

Induction step: R™! =R"o R

If R is a transitive relation, then its powers are contained in R
itself. Moreover, the reverse implication also holds.

Theorem
A relation R on a set A is transitive iff R” C R forall n=1,2,...

J
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Equivalence relations

A relation R on a set A is called an equivalence relation iff it is
reflexive, symmetric and transitive

«0O0» «F»r» « >

«E>»
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Equivalence relations

Definition

A relation R on a set A is called an equivalence relation iff it is
reflexive, symmetric and transitive

Example Let 2* be the set of strings over alphabet X. Let

R C ¥* x ¥* be a relation on strings defined as follows
R={(s,t) € X* x X* | |s| = |t|}. R is an equivalence relation

(proof on the board)



Equivalence relations

Definition
A relation R on a set A is called an equivalence relation iff it is
reflexive, symmetric and transitive

Example Let 2* be the set of strings over alphabet X. Let

R C ¥* x ¥* be a relation on strings defined as follows

R={(s,t) € X* x X* | |s| = |t|}. R is an equivalence relation
(proof on the board)

Example Let R = {(n,m) € Z* x Z" | n| m}. R is not an
equivalence relation (proof on the board)
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Congruence modulo m

Let m > 1 be an integer, and R = {(a,b) | a= b (mod m)}. R is
an equivalence on the set of integers

D¢
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Equivalence classes

Definition
Let R be an equivalence relation on a set A and a € A. Let

[alr = {s | (a;5) € R}

be the equivalence class of a w.r.t. R, i.e. all elements of A that
are R-equivalent to a

If b € [a]r then b is called a representative of the equivalence
class. Every member of the class can be a representative
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Theorem

Theorem

Let R be an equivalence on A and a, b € A. The following three
statements are equivalent
1. aRb

2. [a]g = [b]r
3. [a]r N [blr # 0

V.

(proof on the board)
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Partitions of a set

Definition
A partition of a set A is a collection of disjoint, nonempty subsets
that have A as their union. In other words, the collection of
subsets A; C A with i € | (where [ is an index set) forms a
partition of A iff

1. Ai£Dforalliel

2. AinAj=0foralli#jel
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Theorem

Theorem
1. If R is an equivalence on A, then the equivalence classes of R
form a partition of A
2. Conversely, given a partition {A; | i € I} of A there exists an
equivalence relation R that has exactly the sets A;, i/, as its
equivalence classes

<

(proof on the board)
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Partial orders

Definition
A relation R on a set A is called a partial order iff it is reflexive,
antisymmetric and transitive.

If R is a partial order, we call (A, R) a partially ordered set, or
poset.
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Partial orders

Definition

A relation R on a set A is called a partial order iff it is reflexive,
antisymmetric and transitive.

If R is a partial order, we call (A, R) a partially ordered set, or
poset.

Example < is a partial order, but < is not (since it is not reflexive)

Example The relation | is a partial order, i.e. (Z™,|) is a poset

Example Set inclusion C is partial order, i.e. (24,C) is a poset
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Comparability and total orders

Definition
Two elements a and b of a poset (S, R) are called comparable iff
aRb or bRa holds. Otherwise they are called incomparable

Definition
If (S, R) is a poset where every two elements are comparable, then

S is called a totally ordered or linearly ordered set and the relation
R is called a total order or linear order

16/18



Extending orders to tuples: Standard

defined by

Let (S, <) be a poset and S" =S x S x ... x S (n times)
The standard extension of the partial order to tuples in S" is

(Xi,..

. 7Xn) j (}/17

Yn) e Vie{l,... n}. x; 2y

D¢
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Extending orders to tuples: Standard

defined by

Let (5,=) be a poset and S”" =5 x § x ... x § (n times)
The standard extension of the partial order to tuples in S" is

(X1,..

'7Xn) j (}/17

Jyn) o Vie{l,....n}. x 2y

Exercise Prove that this defines a partial order.
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defined by

Let (5,=) be a poset and S”" =5 x § x ... x § (n times)
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(Xlu o 7Xn) j (J/h
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Extending orders to tuples: Standard

Let (5,=) be a poset and S”" =5 x § x ... x § (n times)
The standard extension of the partial order to tuples in S" is
defined by

(X1 xn) 2 W1y syn) & Vied{l,...,nb. xi 2y

Exercise Prove that this defines a partial order.

Note Even if (S, <) is totally ordered, the extension to S” is not
necessarily a total order. Consider (N, <). Then

(2,1) £(1,2) £(2,1)
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Extending orders to tuples: Lexicographic

Let (5,=) be a poset and S" =5 x S x ... x S (n times). The
lexicographic order on tuples in §” is defined by

(X5 Xn) <lex (V1s---5yn) & i €{1,...,n}.Vk <i.xx = ykAxi < yi

(X17' "7XI7) jlex (}/17~ --7Yn) |ﬂ: (Xla'” 7Xn) <Jex (Y17~- 7.yn) or
(X15- s Xn) = (V15 -+ Yn)
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Extending orders to tuples: Lexicographic

Let (5,=) be a poset and S" =5 x S x ... x S (n times). The
lexicographic order on tuples in §” is defined by

(X5 Xn) <lex (V1s---5yn) & i €{1,...,n}.Vk <i.xx = ykAxi < yi

(X17"'7Xn) jlex (}/17~ "7yn) iff (Xla"' 7Xn) <Jex (Y17--- 7_yn) or
(x1,--y%n) = (V1,5 Yn)

Lemma
If (S, <) is totally ordered then (5", <ex) is totally ordered J
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