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Relations

Definition

Given sets A and B, R ⊆ A× B is a binary relation from A to B,
denoted R : A→ B

• R is a set of ordered pairs, i.e. R ∈ P(A× B)

• A is called the domain of R

• B is called the codomain of R

• We write aRb whenever (a, b) ∈ R

• If B = A, R is called a relation on A

Definition

Given sets A1, . . . ,An,a subset R ⊆ A1 × · · · × An is an n-ary
relation
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Informal examples

• Computation

• Typing

• Program equivalence

• Networks

• Databases
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Examples

Empty relation -

• ∅ : A→ B

• ∀a ∈ A. ∀b ∈ B. ¬(a∅b)

Full relation -

• A× B : A→ B

• ∀a ∈ A. ∀b ∈ B. a(A× B)b

Identity relation -

• IA : A→ A

• IA = {(a, a) | a ∈ A}
• ∀a1, a2 ∈ A. ((a1IAa2)↔ (a1 = a2))

Divides relation -

• |: Z+ → Z+

• |= {(n,m) | ∃k ∈ Z+. m = kn}
• ∀n,m ∈ Z+. ((n | m)↔ (∃k ∈ Z+. m = kn))
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Properties of binary relations

A binary relation R : A→ A is called

• reflexive iff ∀x ∈ A. (x , x) ∈ R

Examples ≤, =, and | are reflexive, but < is not

• symmetric iff ∀x , y ∈ A. ((x , y) ∈ R → (y , x) ∈ R)

Examples = is symmetric, but ≤, <, and | are not

• antisymmetric iff
∀x , y ∈ A. (((x , y) ∈ R ∧ (y , x) ∈ R) → x = y)

Examples ≤, =, <, and | are antisymmetric

• transitive iff
∀x , y , z ∈ A. (((x , y) ∈ R ∧ (y , z) ∈ R) → (x , z) ∈ R)

Examples ≤, =, <, and | are transitive
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Combining relations

Since relations are sets, they can be combined with normal set
operations, e.g. < ∪ = is equal to ≤, and ≤ ∩ ≥ is equal to =.
Moreover, relations can be composed.

Definition

Let R1 : A→ B and R2 : B → C .Then R1 is composable with R2.
The composition is defined by

R1 ◦ R2
def
= {(x , z) ∈ A× C | ∃y ∈ B. ((x , y) ∈ R1 ∧ (y , z) ∈ R2)}

Example If A = B = C = Z, then > ◦ > = {(x , y) ∈ Z× Z | x ≥ y + 2}

Example If A = B = C = R, then > ◦ > = >
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Theorem

Relational composition is associative and has the identity relation
as neutral element

• Associativity - (proof on the board)

∀R : A→ B, S : B → C , T : C → D, (T ◦S)◦R = T ◦(S◦R)

• Neutral element - (proof on the board)

∀R : A→ B, R ◦ IA = R = IB ◦ R

Corollary

For every set A, the structure (P(A× A), IA, ◦) is a monoid
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Powers of a relation

Definition

Given a relation R ⊆ A×A on A, its powers are defined inductively
by
Base step: R0 = IA
Induction step: Rn+1 = Rn ◦ R

If R is a transitive relation, then its powers are contained in R
itself. Moreover, the reverse implication also holds.

Theorem

A relation R on a set A is transitive iff Rn ⊆ R for all n = 1, 2, . . .
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Equivalence relations

Definition

A relation R on a set A is called an equivalence relation iff it is
reflexive, symmetric and transitive

Example Let Σ∗ be the set of strings over alphabet Σ. Let
R ⊆ Σ∗ × Σ∗ be a relation on strings defined as follows
R = {(s, t) ∈ Σ∗ × Σ∗ | |s| = |t|}. R is an equivalence relation

(proof on the board)

Example Let R = {(n,m) ∈ Z+ × Z+ | n | m}. R is not an
equivalence relation (proof on the board)
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Congruence modulo m

Let m > 1 be an integer, and R = {(a, b) | a = b (mod m)}. R is
an equivalence on the set of integers

10 / 18



Equivalence classes

Definition

Let R be an equivalence relation on a set A and a ∈ A. Let

[a]R = {s | (a, s) ∈ R}

be the equivalence class of a w.r.t. R , i.e. all elements of A that
are R-equivalent to a

If b ∈ [a]R then b is called a representative of the equivalence
class. Every member of the class can be a representative
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Theorem

Theorem

Let R be an equivalence on A and a, b ∈ A. The following three
statements are equivalent

1. aRb

2. [a]R = [b]R

3. [a]R ∩ [b]R 6= ∅

(proof on the board)
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Partitions of a set

Definition

A partition of a set A is a collection of disjoint, nonempty subsets
that have A as their union. In other words, the collection of
subsets Ai ⊆ A with i ∈ I (where I is an index set) forms a
partition of A iff

1. Ai 6= ∅ for all i ∈ I

2. Ai ∩ Aj = ∅ for all i 6= j ∈ I

3.
⋃

i∈I Ai = A
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Theorem

Theorem

1. If R is an equivalence on A, then the equivalence classes of R
form a partition of A

2. Conversely, given a partition {Ai | i ∈ I} of A there exists an
equivalence relation R that has exactly the sets Ai , i I , as its
equivalence classes

(proof on the board)

14 / 18



Partial orders

Definition

A relation R on a set A is called a partial order iff it is reflexive,
antisymmetric and transitive.
If R is a partial order, we call (A,R) a partially ordered set, or
poset.

Example ≤ is a partial order, but < is not (since it is not reflexive)

Example The relation | is a partial order, i.e. (Z+, |) is a poset

Example Set inclusion ⊆ is partial order, i.e. (2A,⊆) is a poset
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Comparability and total orders

Definition

Two elements a and b of a poset (S ,R) are called comparable iff
aRb or bRa holds. Otherwise they are called incomparable

Definition

If (S ,R) is a poset where every two elements are comparable, then
S is called a totally ordered or linearly ordered set and the relation
R is called a total order or linear order
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Extending orders to tuples: Standard

Let (S ,�) be a poset and Sn = S × S × . . .× S (n times)
The standard extension of the partial order to tuples in Sn is
defined by

(x1, . . . , xn) � (y1, . . . , yn)↔ ∀i ∈ {1, . . . , n}. xi � yi

Exercise Prove that this defines a partial order.

Note Even if (S ,�) is totally ordered, the extension to Sn is not
necessarily a total order. Consider (N,≤). Then
(2, 1) 6≤ (1, 2) 6≤ (2, 1)
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Extending orders to tuples: Lexicographic

Let (S ,�) be a poset and Sn = S × S × . . .× S (n times). The
lexicographic order on tuples in Sn is defined by

(x1, . . . , xn) ≺lex (y1, . . . , yn)↔ ∃i ∈ {1, . . . , n}. ∀k < i . xk = yk∧xi ≺ yi

(x1, . . . , xn) �lex (y1, . . . , yn) iff (x1, . . . , xn) ≺lex (y1, . . . , yn) or
(x1, . . . , xn) = (y1, . . . , yn)

Lemma

If (S ,�) is totally ordered then (Sn,�lex) is totally ordered
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