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Revisiting the Socrates Example

We have the two premises

e “All men are mortal”

e "“Socrates is a man”

And the conclusion:

e “Socrates is mortal”

How do we get the conclusion from the premises?
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Rules of inference

p—q p—q p—gq pVaq

p -q q—r -p p

" q Soop Sp—r " q SpVaq
p -pVq

PAG g pVr

. p SoPAQ SqVvr

P(u) for an arbitrary u € U Vx. P(x)

o x. P(x)

Ix. P(x)
. P(u) for some u e U

*. P(u) for any arbitrary u € U

P(u) for some u e U

. Ix. P(x)
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Revisiting the Socrates Example

Vx. Man(x) — Mortal(x)
Man(Socrates)

.. Mortal(Socrates)
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Proving Vx. P(x) — Q(x)

e Many theorems have the form:

Vx € U. P(x) = Q(x)

e To prove them, we show that where ¢ is an arbitrary element
of the domain U, P(c) — Q(c¢)

e By universal generalization the truth of the original formula

follows
R(u) for an arbitrary u € U

oo x R(x)

e So, we must prove something of the form: p — g
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Proving Vx. P(x) — Q(x): trivial proof

If we know Vx. Q(x) is true, then Vx. P(x) — Q(x) is true as well
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Proving Vx. P(x) — Q(x): trivial proof

If we know Vx. Q(x) is true, then Vx. P(x) — Q(x) is true as well

For all x € N, if x is even, then x = x
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Proving Vx. P(x) — Q(x): trivial proof

If we know Vx. Q(x) is true, then Vx. P(x) — Q(x) is true as well

For all x € N, if x is even, then x = x J

Proof Let n € N. We need to show that if n is even then n = n.
But we trivially have that n = n, and thus by definition of — we
can conclude that if n is even then n = n. Finally by universal
generalization we can conclude that Vx. P(x) — Q(x). O



Proving Vx. P(x) — Q(x): vacuous proof

well

If we know Vx. —=P(x) is true, then Vx. P(x) — Q(x) is true as
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Proving Vx. P(x) — Q(x): vacuous proof

well

If we know Vx. —=P(x) is true, then Vx. P(x) — Q(x) is true as

For all x € N, if x < x, then x is even
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Proving Vx. P(x) — Q(x): vacuous proof

If we know Vx. =P(x) is true, then Vx. P(x) — Q(x) is true as
well

For all x € N, if x < x, then x is even J

Proof Let n € N. We need to show that if n < n then n is even.
But we trivially have that =(n < n), and thus by definition of —
we can conclude that if n < n then n is even. Finally by universal
generalization we can conclude that Vx. P(x) — Q(x). O
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Proving Vx. P(x) — Q(x): direct proof

Let u € U. Assume that P(u) is true. Use rules of inference,
axioms, and logical equivalences to show that Q(u) must also be
true. Finally by universal generalization we can conclude that

Vx. P(x) = Q(x).
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Proving Vx. P(x) — Q(x): direct proof

Let u € U. Assume that P(u) is true. Use rules of inference,
axioms, and logical equivalences to show that Q(u) must also be
true. Finally by universal generalization we can conclude that

Vx. P(x) = Q(x).

For all x € Z, if x is odd, then x + 1 is even J
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Proving Vx. P(x) — Q(x): direct proof

Let u € U. Assume that P(u) is true. Use rules of inference,
axioms, and logical equivalences to show that Q(u) must also be
true. Finally by universal generalization we can conclude that
Vx. P(x) = Q(x).

For all x € Z, if x is odd, then x + 1 is even

Proof Let n € Z. Assume n is odd, that is n = 2k + 1 for some
integer k. In that case n+ 1 =2(k + 1). And thus n+ 1 is even.
Finally by universal generalization we can conclude that for all

X € Z, if x is odd, then x + 1 is even.

O
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Proving Vx. P(x) — Q(x): proof by contraposition

Let u € U. Prove that =Q(u) — —P(u). By equivalence of a
statement with it contrapositive derive that P(u) — Q(u). Finally

by universal generalization we can conclude that
Vx. P(x) = Q(x).
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Proving Vx. P(x) — Q(x): proof by contraposition

Let u € U. Prove that =Q(u) — —P(u). By equivalence of a
statement with it contrapositive derive that P(u) — Q(u). Finally

by universal generalization we can conclude that
Vx. P(x) = Q(x).

For all integers x and y, if x + y is even, then x and y have the
same parity J
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Proving Vx. P(x) — Q(x): proof by contraposition

Let u € U. Prove that =Q(u) — —P(u). By equivalence of a
statement with it contrapositive derive that P(u) — Q(u). Finally

by universal generalization we can conclude that
Vx. P(x) = Q(x).

For all integers x and y, if x + y is even, then x and y have the
same parity

J

Proof Let n,m € Z. We will prove that if n and m do not have the
same parity then n+ m is odd. Without loss of generality we
assume that n is odd and m is even, that is n = 2k + 1 for some

k € Z, and m = 2{ for some ¢ € Z. But then
n+m=2k+1+2{=2(k+{)+1. And thus n+ mis odd. Now
by equivalence of a statement with it contrapositive derive that if
n+ mis even, then n and m have the same parity. Finally by
universal generalization we can conclude that for all x € Z, if x is
odd, then x + 1 is even. ]
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Proof by contradiction

e The idea is to assume the opposite of what one is trying to
prove and then show that this leads to something that is
clearly nonsensical: a contradiction.
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Proof by contradiction

e The idea is to assume the opposite of what one is trying to
prove and then show that this leads to something that is
clearly nonsensical: a contradiction.

e To prove that P is true, we assume that it is not. That is we
assume —P, and then prove both R and =R. But for any
proposition R, R A—R =F. So we have shown that =P — F.
The only way this implication can be true is if =P is false, i.e.
P is true.
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Proof by contradiction (Example 1)

V/2 is irrational J

o = = = = 9ac
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Proof by contradiction (Example 1)

V2 is irrational J

Proof Assume towards a contradiction that v/2 is rational, that is
there are integers a and b with no common factor other than 1,
such that v/2 = a/b. In that case 2 = a%/b?. Multiplying both
sides by b2, we have a2 = 2b%. Since b is an integer, so is b2, and
thus a® is even. As we saw last week this implies that a is even,
that is there is an integer ¢ such that a = 2¢c. Hence 2b° = 4c?,
hence b?> = 2¢2. Now, since c is an integer, so is ¢, and thus b? is
even. Again, we can conclude that b is even. Thus a and b have a
common factor 2, contradicting the assertion that a and b have no
common factor other than 1. This shows that the original
assumption that /2 is rational is false, and that v/2 must be
irrational. O
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Proof by contradiction (Example 2)

There are infinitely many prime numbers
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Proof by contradiction (Example 2)

There are infinitely many prime numbers

Lemma Every natural number greater than one is either prime or it
has a prime divisor

)
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Proof by contradiction (Example 2)

There are infinitely many prime numbers J

Lemma Every natural number greater than one is either prime or it
has a prime divisor

Proof Suppose towards a contradiction that there are only finitely
many primes p1, p2, pP3, - .., Pk- Consider the number

q = p1p2p3 - .. px + 1, the product of all the primes plus one. By
hypothesis g cannot be prime because it is strictly larger than all
the primes. Thus, by the lemma, it has a prime divisor, p. Because
pP1. P2, P3, ..., Pk are all the primes, p must be equal to one of
them, so p is a divisor of their product. So we have that p divides
p1pP2pP3 - .. Pk , and p divides g, but that means p divides their
difference, which is 1. Therefore p < 1. Contradiction. Therefore
there are infinitely many primes. O
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Proof by cases

e To prove a conditional statement of the form:

p1V:--Vpxk—q

e Use the tautology:

prV---Vpx—=qe(pr—=q) A Apk— q)

e Each of the implications p; — g is a case
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Proof by cases (Example)

Vn, m € N. max(n, m) =

def{ n ifn>m

m otherwise

For all n, m, ¢ € N. max(n, max(m, ¢)) = max(max(n, m), )

J

14 /18



Proof by cases (Example)

def n if n >m
Vn,m € N. max(n, m) = { m otherwise

For all n, m, ¢ € N. max(n, max(m, ¢)) = max(max(n, m), ) |

Proof Let n,m,f € N

Case n > m > {. max(n, max(m,¢)) = max(n,m) = n=
max(n, £) = max(max(n, m), )
m
)

Case n > ¢ > m. max(n, max(
max(n, £) = max(max(n, m), £

,0)) = max(n,0) =n=

In any possible case we proved that

max(n, max(m, ¢)) = max(max(n, m), ¢). Finally by universal
generalization we can conclude that for all

n,m, ¢ € N. max(n, max(m, £)) = max(max(n, m), (). O
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Proving Jx. P(x): constructive proof

e Find an explicit value of u € U, for which P(u) is true
e Then is true by Existential Generalization:

R(u) for some element u
oo 3x R(x)
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Proving Jx. P(x): constructive proof

e Find an explicit value of u € U, for which P(u) is true
e Then is true by Existential Generalization:

R(u) for some element u
oo 3x R(x)

There exists a positive integer that can be written as the sum of
cubes of positive integers in two different ways

J
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Proving Jx. P(x): constructive proof

e Find an explicit value of u € U, for which P(u) is true
e Then is true by Existential Generalization:

R(u) for some element u
oo 3x R(x)

There exists a positive integer that can be written as the sum of
cubes of positive integers in two different ways

Proof 1729 is such a number since 1729 = 103 + 93 = 123 + 130




Proving Jx. P(x): non-constructive proof

In a non-constructive existence proof, we prove that there must
u

exist a u € U exists which makes P(u) without actually finding this
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Proving Jx. P(x): non-constructive proof

In a non-constructive existence proof, we prove that there must

exist a u € U exists which makes P(u) without actually finding this
u

There exist some irrational numbers x and y such that x¥ is
rational
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Proving Jx. P(x): non-constructive proof

In a non-constructive existence proof, we prove that there must
exist a u € U exists which makes P(u) without actually finding this
u

There exist some irrational numbers x and y such that x¥ is
rational

Proof We need only prove the existence of at least one example.

Consider the case x = v/2 and y = v/2. We distinguish two cases:
2. .

Case ﬁ\[ is rational. In that case we have shown that for the

irrational numbers x = y = V2, we have that x” is rational

Case \@\/5 is irrational. In that case consider x = \@ﬁ and
y = V2. We then have that

= (V22 =2 - R =

) . ) 2
But since 2 is rational, we have shown that for x = \@f and
y = /2, we have that x” is rational
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Proving Jx. =P(x): counter-examples

e Recall 3x. =P(x) = =Vx. P(x)

o To establish that —=Vx. P(x) is true (or is false) find a u € U
such that =P (u) is true or P(u) is false.

e In this case u is called a counterexample to the assertion
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Proving Jx. =P(x): counter-examples

e Recall 3x. =P(x) = —Vx. P(x)

o To establish that —=Vx. P(x) is true (or is false) find a u € U
such that =P(u) is true or P(u) is false.

e In this case u is called a counterexample to the assertion

Every positive integer is the sum of the squares of 3 integers J
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Proving Jx. =P(x): counter-examples

e Recall 3x. =P(x) = =Vx. P(x)

o To establish that —=Vx. P(x) is true (or is false) find a u € U
such that =P (u) is true or P(u) is false.

e In this case u is called a counterexample to the assertion

Every positive integer is the sum of the squares of 3 integers J

Proof The integer 7 is a counterexample. So the claim is false.
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“Proof” that 1 = 2

Step

l.a=»>b

2. a2 =ab

3. @ — b = ab— b?

4. (a—b)(a+ b) = b(a—b)
5.a+b=0b

6. 2b= 0>

7.2=1

Reason

Premise

Multiply both sides by a
Subtract b? from both sides
Algebra

Divide both sides by a — b
Replace a by b because a = b
Divide both sides by b
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“Proof” that 1 = 2

Step Reason

l.a=b Premise

2. 8> =ab Multiply both sides by a

3. a2 —b>=ab— b Subtract b? from both sides
4. (a— b)(a+ b) = b(a— b) Algebra

5.a+b=b Divide both sides by a — b

6. 2b=0> Replace a by b because a = b
7.2=1 Divide both sides by b

Step5. a — b = 0 by the premise and division by 0 is undefined!
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