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Revisiting the Socrates Example

We have the two premises:

• “All men are mortal”

• “Socrates is a man”

And the conclusion:

• “Socrates is mortal”

How do we get the conclusion from the premises?

2 / 18



Rules of inference

p → q
p

∴ q

p → q
¬q
∴ ¬p

p → q
q → r

∴ p → r

p ∨ q
¬p
∴ q

p

∴ p ∨ q

p ∧ q

∴ p

p
q

∴ p ∧ q

¬p ∨ q
p ∨ r

∴ q ∨ r

P(u) for an arbitrary u ∈ U
∴ ∀x . P(x)

∀x . P(x)

∴ P(u) for any arbitrary u ∈ U

∃x . P(x)

∴ P(u) for some u ∈ U
P(u) for some u ∈ U
∴ ∃x . P(x)
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Revisiting the Socrates Example

∀x . Man(x)→ Mortal(x)
Man(Socrates)

∴ Mortal(Socrates)
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Proving ∀x . P(x)→ Q(x)

• Many theorems have the form:

∀x ∈ U . P(x)→ Q(x)

• To prove them, we show that where c is an arbitrary element
of the domain U , P(c)→ Q(c)

• By universal generalization the truth of the original formula
follows

R(u) for an arbitrary u ∈ U
∴ ∀x . R(x)

• So, we must prove something of the form: p → q
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Proving ∀x . P(x)→ Q(x): trivial proof

If we know ∀x . Q(x) is true, then ∀x . P(x)→ Q(x) is true as well

For all x ∈ N, if x is even, then x = x

Proof Let n ∈ N. We need to show that if n is even then n = n.
But we trivially have that n = n, and thus by definition of → we
can conclude that if n is even then n = n. Finally by universal
generalization we can conclude that ∀x . P(x)→ Q(x). �
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Proving ∀x . P(x)→ Q(x): vacuous proof

If we know ∀x . ¬P(x) is true, then ∀x . P(x)→ Q(x) is true as
well

For all x ∈ N, if x < x , then x is even

Proof Let n ∈ N. We need to show that if n < n then n is even.
But we trivially have that ¬(n < n), and thus by definition of →
we can conclude that if n < n then n is even. Finally by universal
generalization we can conclude that ∀x . P(x)→ Q(x). �
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Proving ∀x . P(x)→ Q(x): direct proof

Let u ∈ U . Assume that P(u) is true. Use rules of inference,
axioms, and logical equivalences to show that Q(u) must also be
true. Finally by universal generalization we can conclude that
∀x . P(x)→ Q(x).

For all x ∈ Z, if x is odd, then x + 1 is even

Proof Let n ∈ Z. Assume n is odd, that is n = 2k + 1 for some
integer k. In that case n + 1 = 2(k + 1). And thus n + 1 is even.
Finally by universal generalization we can conclude that for all
x ∈ Z, if x is odd, then x + 1 is even. �
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Proving ∀x . P(x)→ Q(x): proof by contraposition

Let u ∈ U . Prove that ¬Q(u)→ ¬P(u). By equivalence of a
statement with it contrapositive derive that P(u)→ Q(u). Finally
by universal generalization we can conclude that
∀x . P(x)→ Q(x).

For all integers x and y , if x + y is even, then x and y have the
same parity

Proof Let n,m ∈ Z. We will prove that if n and m do not have the
same parity then n + m is odd. Without loss of generality we
assume that n is odd and m is even, that is n = 2k + 1 for some
k ∈ Z, and m = 2` for some ` ∈ Z. But then
n + m = 2k + 1 + 2` = 2(k + `) + 1. And thus n + m is odd. Now
by equivalence of a statement with it contrapositive derive that if
n + m is even, then n and m have the same parity. Finally by
universal generalization we can conclude that for all x ∈ Z, if x is
odd, then x + 1 is even. �

9 / 18



Proving ∀x . P(x)→ Q(x): proof by contraposition

Let u ∈ U . Prove that ¬Q(u)→ ¬P(u). By equivalence of a
statement with it contrapositive derive that P(u)→ Q(u). Finally
by universal generalization we can conclude that
∀x . P(x)→ Q(x).

For all integers x and y , if x + y is even, then x and y have the
same parity

Proof Let n,m ∈ Z. We will prove that if n and m do not have the
same parity then n + m is odd. Without loss of generality we
assume that n is odd and m is even, that is n = 2k + 1 for some
k ∈ Z, and m = 2` for some ` ∈ Z. But then
n + m = 2k + 1 + 2` = 2(k + `) + 1. And thus n + m is odd. Now
by equivalence of a statement with it contrapositive derive that if
n + m is even, then n and m have the same parity. Finally by
universal generalization we can conclude that for all x ∈ Z, if x is
odd, then x + 1 is even. �

9 / 18



Proving ∀x . P(x)→ Q(x): proof by contraposition

Let u ∈ U . Prove that ¬Q(u)→ ¬P(u). By equivalence of a
statement with it contrapositive derive that P(u)→ Q(u). Finally
by universal generalization we can conclude that
∀x . P(x)→ Q(x).

For all integers x and y , if x + y is even, then x and y have the
same parity

Proof Let n,m ∈ Z. We will prove that if n and m do not have the
same parity then n + m is odd. Without loss of generality we
assume that n is odd and m is even, that is n = 2k + 1 for some
k ∈ Z, and m = 2` for some ` ∈ Z. But then
n + m = 2k + 1 + 2` = 2(k + `) + 1. And thus n + m is odd. Now
by equivalence of a statement with it contrapositive derive that if
n + m is even, then n and m have the same parity. Finally by
universal generalization we can conclude that for all x ∈ Z, if x is
odd, then x + 1 is even. �

9 / 18



Proof by contradiction

• The idea is to assume the opposite of what one is trying to
prove and then show that this leads to something that is
clearly nonsensical: a contradiction.

• To prove that P is true, we assume that it is not. That is we
assume ¬P, and then prove both R and ¬R. But for any
proposition R, R ∧ ¬R ≡ F. So we have shown that ¬P → F.
The only way this implication can be true is if ¬P is false, i.e.
P is true.
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Proof by contradiction (Example 1)

√
2 is irrational

Proof Assume towards a contradiction that
√

2 is rational, that is
there are integers a and b with no common factor other than 1,
such that

√
2 = a/b. In that case 2 = a2/b2. Multiplying both

sides by b2, we have a2 = 2b2. Since b is an integer, so is b2, and
thus a2 is even. As we saw last week this implies that a is even,
that is there is an integer c such that a = 2c . Hence 2b2 = 4c2,
hence b2 = 2c2. Now, since c is an integer, so is c2, and thus b2 is
even. Again, we can conclude that b is even. Thus a and b have a
common factor 2, contradicting the assertion that a and b have no
common factor other than 1. This shows that the original
assumption that

√
2 is rational is false, and that

√
2 must be

irrational. �

11 / 18



Proof by contradiction (Example 1)

√
2 is irrational

Proof Assume towards a contradiction that
√

2 is rational, that is
there are integers a and b with no common factor other than 1,
such that

√
2 = a/b. In that case 2 = a2/b2. Multiplying both

sides by b2, we have a2 = 2b2. Since b is an integer, so is b2, and
thus a2 is even. As we saw last week this implies that a is even,
that is there is an integer c such that a = 2c . Hence 2b2 = 4c2,
hence b2 = 2c2. Now, since c is an integer, so is c2, and thus b2 is
even. Again, we can conclude that b is even. Thus a and b have a
common factor 2, contradicting the assertion that a and b have no
common factor other than 1. This shows that the original
assumption that

√
2 is rational is false, and that

√
2 must be

irrational. �

11 / 18



Proof by contradiction (Example 2)

There are infinitely many prime numbers

Lemma Every natural number greater than one is either prime or it
has a prime divisor
Proof Suppose towards a contradiction that there are only finitely
many primes p1, p2, p3, . . . , pk . Consider the number
q = p1p2p3 . . . pk + 1, the product of all the primes plus one. By
hypothesis q cannot be prime because it is strictly larger than all
the primes. Thus, by the lemma, it has a prime divisor, p. Because
p1, p2, p3, . . . , pk are all the primes, p must be equal to one of
them, so p is a divisor of their product. So we have that p divides
p1p2p3 . . . pk , and p divides q, but that means p divides their
difference, which is 1. Therefore p ≤ 1. Contradiction. Therefore
there are infinitely many primes. �
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Proof by cases

• To prove a conditional statement of the form:

p1 ∨ · · · ∨ pk → q

• Use the tautology:

p1 ∨ · · · ∨ pk → q ↔ (p1 → q) ∧ · · · ∧ (pk → q)

• Each of the implications pi → q is a case
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Proof by cases (Example)

∀n,m ∈ N. max(n,m)
def
=

{
n if n ≥ m
m otherwise

For all n,m, ` ∈ N. max(n,max(m, `)) = max(max(n,m), `)

Proof Let n,m, ` ∈ N
Case n ≥ m ≥ `. max(n,max(m, `)) = max(n,m) = n =
max(n, `) = max(max(n,m), `)
Case n ≥ ` ≥ m. max(n,max(m, `)) = max(n, `) = n =
max(n, `) = max(max(n,m), `)
. . .
In any possible case we proved that
max(n,max(m, `)) = max(max(n,m), `). Finally by universal
generalization we can conclude that for all
n,m, ` ∈ N. max(n,max(m, `)) = max(max(n,m), `). �

14 / 18



Proof by cases (Example)

∀n,m ∈ N. max(n,m)
def
=

{
n if n ≥ m
m otherwise

For all n,m, ` ∈ N. max(n,max(m, `)) = max(max(n,m), `)

Proof Let n,m, ` ∈ N
Case n ≥ m ≥ `. max(n,max(m, `)) = max(n,m) = n =
max(n, `) = max(max(n,m), `)
Case n ≥ ` ≥ m. max(n,max(m, `)) = max(n, `) = n =
max(n, `) = max(max(n,m), `)
. . .
In any possible case we proved that
max(n,max(m, `)) = max(max(n,m), `). Finally by universal
generalization we can conclude that for all
n,m, ` ∈ N. max(n,max(m, `)) = max(max(n,m), `). �

14 / 18



Proving ∃x . P(x): constructive proof

• Find an explicit value of u ∈ U , for which P(u) is true

• Then is true by Existential Generalization:

R(u) for some element u

∴ ∃x . R(x)

There exists a positive integer that can be written as the sum of
cubes of positive integers in two different ways

Proof 1729 is such a number since 1729 = 103 + 93 = 123 + 13�
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Proving ∃x . P(x): non-constructive proof

In a non-constructive existence proof, we prove that there must
exist a u ∈ U exists which makes P(u) without actually finding this
u

There exist some irrational numbers x and y such that xy is
rational

Proof We need only prove the existence of at least one example.
Consider the case x =

√
2 and y =

√
2. We distinguish two cases:

Case
√

2
√
2

is rational. In that case we have shown that for the
irrational numbers x = y =

√
2, we have that xy is rational

Case
√

2
√
2

is irrational. In that case consider x =
√

2
√
2

and
y =
√

2. We then have that

xy = (
√

2

√
2
)
√
2 =
√

2

√
2
√
2

=
√

2
2

= 2

But since 2 is rational, we have shown that for x =
√

2
√
2

and
y =
√

2, we have that xy is rational
We have thus shown that in any case there exist some irrational
numbers x and y such that xy is rational
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Proving ∃x . ¬P(x): counter-examples

• Recall ∃x . ¬P(x) ≡ ¬∀x . P(x)

• To establish that ¬∀x . P(x) is true (or is false) find a u ∈ U
such that ¬P(u) is true or P(u) is false.

• In this case u is called a counterexample to the assertion

Every positive integer is the sum of the squares of 3 integers

Proof The integer 7 is a counterexample. So the claim is false.
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“Proof” that 1 = 2

Step Reason
1. a = b Premise
2. a2 = ab Multiply both sides by a
3. a2 − b2 = ab − b2 Subtract b2 from both sides
4. (a− b)(a + b) = b(a− b) Algebra
5. a + b = b Divide both sides by a− b
6. 2b = b Replace a by b because a = b
7. 2 = 1 Divide both sides by b

Step5. a− b = 0 by the premise and division by 0 is undefined!

18 / 18



“Proof” that 1 = 2

Step Reason
1. a = b Premise
2. a2 = ab Multiply both sides by a
3. a2 − b2 = ab − b2 Subtract b2 from both sides
4. (a− b)(a + b) = b(a− b) Algebra
5. a + b = b Divide both sides by a− b
6. 2b = b Replace a by b because a = b
7. 2 = 1 Divide both sides by b

Step5. a− b = 0 by the premise and division by 0 is undefined!

18 / 18


