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Propositional logic is not enough

In proposition logic, from:

• All men are mortal

• Socrates in a man

we cannot derive that:

• Socrates is a man

We need a language to talk about objects, their properties and
their relations
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Predicate logic

Extends propositional logic by the following new features:

• Variables: x , y ,z , . . .

• Predicates (i.e. propositional functions): P(x), Q(x), R(y),
M(x , y), . . .

• Quantifiers: ∀, ∃

Propositional functions are a generalization of propositions”

• Can contain variables and predicates, e.g. P(x)

• Variables stand for (and can be replaced by) elements from
their domain

• The truth value of a predicate depends on the values of its
variables
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Propositional functions

Propositional functions become propositions (and thus have truth
values) when all their variables are either

• replaced by a value from their domain,

• or bound by a quantifier

The domain is often denoted by U (the universe)

Example: Let P(x) denote “x > 5” and U = Z. Then

• P(8) is true

• P(5) is false
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Quantifiers

• Universal quantifier, “For all”. Symbol: ∀
∀x ∈ U . P(x) asserts that P(x) is true for every x in the
domain U

• Existential quantifier, “There exists”. Symbol: ∃
∃x ∈ U . P(x) asserts that P(x) is true for some x in the
domain U

• The quantifiers are said to bind the variable x in these
expressions. Variables in the scope of some quantifier are
called bound variables. All other variables in the expression
are called free variables

• A propositional function that does not contain any free
variables is a proposition and has a truth value
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Nested quantifiers

Complex meanings require nested quantifiers

Example: “Every real number has an inverse w.r.t. addition”
Let the domain U = R. Then the property is expressed by

∀x . ∃y . (x + y = 0)

Example: “Every real number except zero has a multiplicative
inverse.
Let the domain U = R. Then the property is expressed by

∀x . (x 6= 0 → ∃y . (x × y = 1)
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Equivalences in proofs

• Statements involving predicates and quantifiers are logically
equivalent if and only if they have the same truth value for
every predicate substituted into these statements and for every
domain of discourse used for the variables in the expressions

• The notation S ≡ T indicates that S and T are logically
equivalent

• Example: ∀x . ¬¬S(x) ≡ ∀x . S(x)

• Example: ∀x . (P(x) ∧ Q(x)) ≡ (∀x . P(x)) ∧ (∀x . Q(x))

• Example: ∀x . ∀y . P(x , y) ≡ ∀y . ∀x . P(x , y)

• Example: ∀x . ∃y . P(x , y) 6≡ ∃y . ∀x . P(x , y)
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Quantifiers as Conjunctions/Disjunctions

• If the domain is finite then universal/existential quantifiers
can be expressed by conjunctions/disjunctions.
Example: If U consists of the integers 1,2, and 3, then

I ∀x . P(x) ≡ P(1) ∧ P(2) ∧ P(3)
I ∃x . P(x) ≡ P(1) ∨ P(2) ∨ P(3)

• Even if the domains are infinite, you can still think of the
quantifiers in this fashion, but the equivalent expressions
without quantifiers will be infinitely long
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De Morgan’s law for quantifiers

The rules for negating quantifiers are:

• ¬(∀x . P(x)) ≡ ∃x . ¬P(x)

• ¬(∃x . P(x)) ≡ ∀x . ¬P(x)
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Validity

An assertion in predicate calculus is valid iff it is true

• for all domains

• for every propositional functions substituted for the predicates
in the assertion

Example: ∀x . P(x) ∨ (¬P(x))
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Satisfiability

An assertion in predicate calculus is satisfiable iff it is true

• for some domain

• for some propositional functions that can be substituted for
the predicates in the assertion

Example: ∀x . ∃y .P(x , y) is satisfiable
The domain N, and the propositional function ≤ satisfy this
assertion

Example: ∀x . P(x) ∧ (¬P(x)) is unsatisfiable
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If x is irrational then so is
√
x

Let Irrational(x) denote the propositional function “x is irrational”,
and Rational(x) = ¬Irrational(x)

Proposition

∀x ∈ R+. Irrational(x) → Irrational(
√
x)

Proof Let x be positive real number. We will show the
contrapositive,i.e. ∀x ∈ R+. Rational(

√
x) → Rational(x). In

other words we prove that if
√
x is rational then so is x . Assume

that
√
x is a rational number. Then, by definition, there must

exists two natural numbers m and n such that
√
x = m/n. But

then x = m2/n2 and, since m2 and n2 are natural numbers, which
by definition implies that x is a rational number as required. �

12 / 15



If x is irrational then so is
√
x

Let Irrational(x) denote the propositional function “x is irrational”,
and Rational(x) = ¬Irrational(x)

Proposition

∀x ∈ R+. Irrational(x) → Irrational(
√
x)

Proof Let x be positive real number. We will show the
contrapositive,i.e. ∀x ∈ R+. Rational(

√
x) → Rational(x). In

other words we prove that if
√
x is rational then so is x . Assume

that
√
x is a rational number. Then, by definition, there must

exists two natural numbers m and n such that
√
x = m/n. But

then x = m2/n2 and, since m2 and n2 are natural numbers, which
by definition implies that x is a rational number as required. �

12 / 15



n is even iff n2 is even.

Let Even(x) denote the propositional function “x is even, and
Odd(x) = ¬Even(x)

Proposition

∀n ∈ Z. Even(n) ↔ Even(n2)

Proof Let n ∈ Z
(→) Let’s assume that n is even, i.e. there exists an integer k such
that n = 2k. Then n2 = (2k)2 = 4k2 = 2(2k2), and thus for
` = 2k2, n2 = 2` and so is even.
(→) We will show the contrapositive,i.e. Odd(n) → Odd(n2).
Let’s assume that n is odd, i.e. there exists an integer k such that
n = 2k + 1. Then n2 = (2k + 1)2 = 2(2k2 + 2k) + 1, and thus for
` = 2k2 + k , n2 = 2` + 1 and so is odd. �
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4k = i2 − j2

Proposition

∀k ∈ N. ∃i ∈ N. ∃j ∈ N. 4k = i2 − j2

Proof Let k ∈ N. Let i = k + 1 and j = k + 1.
i2 − j2 = (k + 1)2 − (k − 1)2 = k2 + 2k + 1− k2 + 2k − 1 = 4k .�
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Either n2 ≡ 0 (mod 4) or n2 ≡ 1 (mod 4)

Proposition

∀n ∈ Z. n2 ≡ 0 (mod 4) ∨ n2 ≡ 1 (mod 4)

Proof Let n ∈ Z. n is either even or odd. We consider each case
separately.
(1) Assume n is even. Then there exists m such that n = 2m. But
then n2 = 4m2 ≡ 0 (mod 4)
(1) Assume n is odd. Then there exists m such that n = 2m + 1.
But then n2 = 4m2 + 4m + 1 = 4(m2 + m) + 1 ≡ 1 (mod 4) �
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