
Algorithms

Myrto Arapinis
School of Informatics

University of Edinburgh

October 15, 2014

1 / 18

Algorithms

Definition

An algorithm is a finite set of precise instructions for performing a
computation or for solving a problem

Input - an algorithm has input values from a specified set

Output - from the input values, the algorithm produces the
output values from a specified set. The output values
are the solution

Correctness - an algorithm should produce the correct output
values for each set of input values

Finiteness - an algorithm should produce the output after a finite
number of steps for any input

Effectiveness - it must be possible to perform each step of the
algorithm correctly and in a finite amount of time

Generality - the algorithm should work for all problems of the
desired form

2 / 18

Description of algorithms in pseudocode

• Intermediate step between English prose and formal coding in
a programming language

• Focus on the fundamental operation of the program, instead
of peculiarities of a given programming language

• Analyze the time required to solve a problem using an
algorithm, independent of the actual programming language

3 / 18

Example - maximum

Describe an algorithm for finding the maximum value in a finite
sequence of integers

Input: finite sequence of integers: ā = a1, · · · an
Output: integer ai (1 ≤ i ≤ n) st for all j ∈ {1, · · · , n}, aj ≤ ai

procedure max(a1, ..., an)

max:= a1
for i:=2 to n

if max< ai
then max:=ai

return max

4 / 18

Example - linear search

Describe an algorithm for locating an item in a sequence of
integers

Input: integer: x , finite sequence of integers: ā = a1, · · · an
Output: integer i (0 ≤ i ≤ n) st ai = x if x ∈ ā, i = 0 otherwise

procedure linear search(x, a1, ..., an)

i:= 1

while i≤n and x 6= ai
i:=i+1

if i≤n
then location:=i

else location:=0

return location

5 / 18

Example - binary search

Describe an algorithm for locating an item in an ordered sequence
of integers

Input: integer: x , finite sequence of integers: ā = a1, · · · an
Output: integer i (0 ≤ i ≤ n) st ai = x if x ∈ ā, i = 0 otherwise

• The algorithm begins by comparing the target with the middle
element

. if the middle element is strictly lower than the target, then the
search proceeds with the upper half of the list

. otherwise, the search proceeds with the lower half of the list
(including the middle)

• Repeat this process until we have a list of size 1

. if target is equal to the single element in the list, then the
position is returned

. otherwise, 0 is returned to indicate that the element was not
found

6 / 18

Example - binary search

procedure binary search(x, a1, ..., an)

i:= 1

j:= m

while i<j
m:=b(i + j)/2c
if x> am
then i:=m+1

else j:=m

if x= ai
then location:=i

else location:=0

return location

7 / 18

The growth of function

Given functions f : N→ R or f : R→ R. Analyzing how fast a
function grows

• Comparing two functions

• Comparing the efficiently of different algorithms that solve the
same problem

• Applications in number theory (Chapter 4) and combinatorics
(Chapters 6 and 8)

8 / 18

Big-O Notation

Definition

Let f , g : N→ R or f , g : R→ R. We say that f is O(g) if there
is a constant k and a positive constant C such that

∀x > k . |f (x)| ≤ C |g(x)|

• We say “f is big-O of g” or “g asymptotically dominates f ”

• C and k are called witnesses to the relationship between f
and g . Only one pair of witnesses is needed. (One pair implies
many pairs: one can always make k or C larger)

• Common abuses of notation: “f (x) is big-O of g(x)” or
“f (x) = O(g(x))”. This is not strictly true, since big-O refers
to functions and not their values, and the equality doesn’t hold

• O(g) is the class of all functions f that satisfy the condition
above. So it would be formally correct to write f ∈ O(g)

9 / 18

Examples

• f (x) = anx
n + an1x

n1 + + a1x + a0 is O(xn)

• 1 + 2 + + n is O(n2)

• log(n) is O(n)

• n! = 1× 2× · · · × n is O(nn)

• log(n!) is O(nlog(n))

10 / 18

Useful big-O estimates

• if d > c > 1,then nc is O(nd), but nd is not O(nc)

• if b > 1 and c and d are positive, then (logb(n))c is O(nd),
but nd is not O((logb(n))c)

• if b > 1 and d is positive, then nd is O(bn), but bn is not
O(nd)

• if c > b > 1,then bn is O(cn), but cn is not O(bn)

• if f1 is O(g1) and f2 is O(g2) then (f1 + f2) is
O(max(|g1|, |g2|))

• if f1 is O(g1) and f2 is O(g2) then (f1 × f2) is O(g1 × g2)

11 / 18

Big-Omega notation

Definition

Let f , g : R→ R. We say that f is Ω(g) if there if there is a
constant k and a positive constant C such that

∀x > k . |f (x)| ≥ C |g(x)|

• We say “f is big-Omega of g”. The constants “C” and “k”
are called witnesses to the relationship between f and g

• Big-O gives an upper bound on the growth of a function,
while Big-Omega gives a lower bound

• Big-Omega tells us that a function grows at least as fast as
another

• Similar abuse of notation as for big-O

• f is Ω(g) if and only if g is O(f) (Prove this by using the
definitions of O and Ω)

12 / 18

Big-Theta notation

Definition

Let f , g : R→ R. We say that f is Θ(g) iff f is O(g) and f is
Ω(g)

• We say “f is big-Theta of g” and also “f is of order g” and
also “f and g are of the same order”

• f is Θ(g) iff there exists constants C1, C2and k such that
C1|g(x)| ≤ |f (x)| ≤ C2|g(x)| if x > k . This follows from the
definitions of big-O and big-Omega

13 / 18

Example

Show that the sum 1 + 2 + · · ·+ n of the first n positive integers is
Θ(n2) Solution: Let f (n) = 1 + 2 + · · ·+ n. We have previously

shown that f (n) is O(n2)
To show that f (n) is Ω(n2), we need a positive constant C such
that f (n) > Cn2 for sufficiently large n
Summing only the terms greater than n/2 we obtain the inequality:

1 + 2 + · · ·+ n ≥ dn/2e+ (dn/2e+ 1) + · · ·+ n
≥ dn/2e+ dn/2e+ · · ·+ dn/2e
= (n − dn/2e+ 1)dn/2e
≥ (n/2)(n/2)
= n2/4

Taking C = 1/4, f (n) > Cn2 for all positive integers n. Hence,
f (n) is Ω(n2), and we can conclude that f (n) is Θ(n2)

14 / 18

Complexity of algorithms

• Given an algorithm, how efficient is this algorithm for solving
a problem given input of a particular size?
How much time does this algorithm use to solve a problem?
How much computer memory does this algorithm use to solve
a problem?

• We measure time complexity in terms of the number of
operations an algorithm uses and use big-O and big-Theta
notation to estimate the time complexity

• Compare the efficiency of different algorithms for the same
problem

• We focus on the worst-case time complexity of an algorithm.
Derive an upper bound on the number of operations an
algorithm uses to solve a problem with input of a particular
size. (As opposed to the average-case complexity)

• Here: Ignore implementation details and hardware properties
−→ See courses on algorithms and complexity.

15 / 18

Worst-Case complexity of linear search

procedure linear search(x, a1, ..., an)

i:= 1

while i≤n and x 6= ai
i:=i+1

if i≤n
then location:=i

else location:=0

return location

Count the number of comparisons’:

• at each step two comparisons are made; i ≤ n and x 6= ai

• to end the loop, one comparison i ≤ n is made

• after the loop, one more i ≤ n comparison is made

If x = ai , 2i + 1 comparisons are used. If x is not on the list,
2n + 1 comparisons are made and then an additional comparison is
used to exit the loop. So, in the worst case 2n + 2 comparisons are
made. Hence, the complexity is Θ(n)

16 / 18

Average-Case complexity of linear search

For many problems, determining the average-case complexity is
very difficult. (And often not very useful, since the real distribution
of input cases does not match the assumptions.) However, for
linear search the average-case is easy.
Assume the element is in the list and that the possible positions
are equally likely. By the argument on the previous slide, if x = ai ,
the number of comparisons is 2i + 1. Hence, the average-case
complexity of linear search is

1

n

n∑
i=1

2i + 1 = n + 2

Which is Θ(n)

17 / 18

Worst-Case complexity of binary search

procedure binary search(x, a1, ..., an)

i:= 1

j:= m

while i<j
m:=b(i + j)/2c
if x> am then i:=m+1 else j:=m

if x= ai then location:=i else location:=0

return location

Assume

(for simplicity) n = 2k elements. Note that k = log2n. Two
comparisons are made at each stage; i < j , and x > am. At the
first iteration the size of the list is 2k and after the first iteration it
is 2k−1. Then 2k−2 and so on until the size of the list is 21 = 2.
At the last step, a comparison tells us that the size of the list is the
size is 20 = 1 and the element is compared with the single
remaining element. Hence, at most 2k + 2 = 2log2n + 2
comparisons are made. Θ(logn)

18 / 18

