Algorithms

Myrto Arapinis
School of Informatics

University of Edinburgh

October 15, 2014

Qe
1/18

Algorithms

Definition
An algorithm is a finite set of precise instructions for performing a
computation or for solving a problem

Input - an algorithm has input values from a specified set
Output - from the input values, the algorithm produces the
output values from a specified set. The output values
are the solution
Correctness - an algorithm should produce the correct output
values for each set of input values
Finiteness - an algorithm should produce the output after a finite
number of steps for any input
Effectiveness - it must be possible to perform each step of the
algorithm correctly and in a finite amount of time
Generality - the algorithm should work for all problems of the
desired form

N

18

Description of algorithms in pseudocode

o Intermediate step between English prose and formal coding in
a programming language

e Focus on the fundamental operation of the program, instead
of peculiarities of a given programming language

e Analyze the time required to solve a problem using an
algorithm, independent of the actual programming language

u]
o)
|
i
it

Example - maximum

Describe an algorithm for finding the maximum value in a finite
sequence of integers

Input: finite sequence of integers: a = a1, - an

Output: integer a; (1 <i<n)stforall je{1,---,n} aj <a
procedure max(a;, ..., ap)
max:= ag

for i:=2 to n
if max< aj
then max:=a;

return max

18

Example - linear search

Describe an algorithm for locating an item in a sequence of
integers

Input: integer: x, finite sequence of integers: 3 = a1, - ap
Output: integer i (0 < i <n) sta;=xif x €3, i =0 otherwise

procedure linear search(x, aj, ..., ap)
i:=1
while i<n and x# a;
i:=i+l
if i<n

then location:=i
else location:=0
return location

Example - binary search

Describe an algorithm for locating an item in an ordered sequence
of integers

Input: integer: x, finite sequence of integers: a = a1, - - a,
Output: integer i (0 < i < n) sta; =x if x €3, i =0 otherwise

e The algorithm begins by comparing the target with the middle
element
> if the middle element is strictly lower than the target, then the

search proceeds with the upper half of the list
> otherwise, the search proceeds with the lower half of the list

(including the middle)
e Repeat this process until we have a list of size 1

> if target is equal to the single element in the list, then the

position is returned
> otherwise, 0 is returned to indicate that the element was not

found

6

18

Example - binary search

procedure binary search(x, aj, ..., ap)
i:=1
ji=m
while i<j
mi=|(1 + 3)/2]
if x> ay
then i:=m+1
else j:=m
if x=a;

then location:=i
else location:=0
return location

D QR
/18

The growth of function

Given functions f : N — R or f : R — R. Analyzing how fast a
function grows

e Comparing two functions

e Comparing the efficiently of different algorithms that solve the
same problem

e Applications in number theory (Chapter 4) and combinatorics
(Chapters 6 and 8)

18

Big-O Notation

Definition
Let f,g:N—Rorf,g:R— R. Wesay that f is O(g) if there
is a constant k and a positive constant C such that

Vx > k. |[f(x)] < Clg(x)]

e We say “f is big-O of g" or “g asymptotically dominates "

e C and k are called witnesses to the relationship between f
and g. Only one pair of witnesses is needed. (One pair implies
many pairs: one can always make k or C larger)

e Common abuses of notation: “f(x) is big-O of g(x)" or
“f(x) = O(g(x))". This is not strictly true, since big-O refers
to functions and not their values, and the equality doesn’t hold

e O(g) is the class of all functions f that satisfy the condition
above. So it would be formally correct to write f € O(g)

Examples

o f(x) = apx" 4+ amx™ + + a;x + ag is O(x")
142+ +nis O(n?)

log(n) is O(n)
enl=1x2x---xnis O(n")

log(n!) is O(nlog(n))

u]
o)
|
i
it

DA
10/18

Useful big-O estimates

e if d > ¢ > 1then n®is O(n?), but n? is not O(n°)

e if b>1and c and d are positive, then (log,(n))¢ is O(n9),
but n9 is not O((logy(n))°)

e if b> 1 and d is positive, then n is O(b"), but b" is not
O(n9)

o if c > b > 1then b”is O(c"), but c" is not O(b")

o if f1is O(g1) and £ is O(g2) then (f1 + f2) is
O(max(|g1l, lg2]))

o if f1is O(g1) and £ is O(g2) then (fi x) is O(g1 x &2)

11/18

Big-Omega notation

Definition
Let f,g : R — R. We say that f is Q(g) if there if there is a
constant k and a positive constant C such that

Vx> k. [f(x)| > Clg(x)|

o We say “f is big-Omega of g". The constants “C" and “k”
are called witnesses to the relationship between f and g

e Big-O gives an upper bound on the growth of a function,
while Big-Omega gives a lower bound

e Big-Omega tells us that a function grows at least as fast as
another

e Similar abuse of notation as for big-O

o fis Q(g) if and only if g is O(f) (Prove this by using the
definitions of O and Q)

12/18

Big-Theta notation

Definition

Let f,g: R — R. We say that f is ©(g) iff f is O(g) and f is
Q(e)

o We say “f is big-Theta of g" and also “f is of order g” and
also “f and g are of the same order”

o fis ©(g) iff there exists constants C;, Coand k such that

Glg(x)| < |f(x)| < Glg(x)| if x > k. This follows from the
definitions of big-O and big-Omega

13/18

Example

Show that the sum 1 + 2 + - -- + n of the first n positive integers is
©(n?) Solution: Let f(n) =1+2+---+ n. We have previously

shown that f(n) is O(n?)

To show that f(n) is Q(n?), we need a positive constant C such
that f(n) > Cn? for sufficiently large n

Summing only the terms greater than n/2 we obtain the inequality:

1+2+---4+n > [n/2]+([n/2] +1)+---+n
> [n/2]+[n/2] + -+ [n/2]
= (n—[n/2]+1)[n/2]
> (n/2)(n/2)
= n?/4

Taking C = 1/4, f(n) > Cn? for all positive integers n. Hence,
f(n) is (n?), and we can conclude that f(n) is ©(n?)

14 /18

Complexity of algorithms

e Given an algorithm, how efficient is this algorithm for solving
a problem given input of a particular size?

How much time does this algorithm use to solve a problem?
How much computer memory does this algorithm use to solve
a problem?

o We measure time complexity in terms of the number of
operations an algorithm uses and use big-O and big-Theta
notation to estimate the time complexity

e Compare the efficiency of different algorithms for the same
problem

e We focus on the worst-case time complexity of an algorithm.
Derive an upper bound on the number of operations an
algorithm uses to solve a problem with input of a particular
size. (As opposed to the average-case complexity)

e Here: Ignore implementation details and hardware properties
— See courses on algorithms and complexity.

15/18

Worst-Case complexity of linear search

procedure linear search(x, aj, ..., ap)
ir=1
while i<n and x# a;
i:=i+1
if i<n

then location:=i
else location:=0
return location

Count the number of comparisons':

e at each step two comparisons are made; i < n and x # ai

e to end the loop, one comparison i < n is made

e after the loop, one more i < n comparison is made
If x =a;, 2i +1 comparisons are used. If x is not on the list,
2n + 1 comparisons are made and then an additional comparison is

used to exit the loop. So, in the worst case 2n + 2 comparisons are

made. Hence, the complexity is ©(n)
16 /18

Average-Case complexity of linear search

For many problems, determining the average-case complexity is
very difficult. (And often not very useful, since the real distribution
of input cases does not match the assumptions.) However, for
linear search the average-case is easy.

Assume the element is in the list and that the possible positions
are equally likely. By the argument on the previous slide, if x = a; ,
the number of comparisons is 2/ + 1. Hence, the average-case
complexity of linear search is

1 n
fE 2i + 1=n+42
n

i=1

Which is ©(n)

17/18

Worst-Case complexity of binary search

procedure binary_search(x, aj;, ..., ap) Assume
i:=1
j:=m
while i<j
m:=[(i +3)/2]
if x> ap then i:=m+1 else j:=m
if x=a; then location:=i else location:=0
return location

(for simplicity) n = 2k elements. Note that k = logan. Two
comparisons are made at each stage; / < j, and x > a,,. At the
first iteration the size of the list is 2% and after the first iteration it
is 271 Then 272 and so on until the size of the list is 2 = 2.
At the last step, a comparison tells us that the size of the list is the
size is 20 = 1 and the element is compared with the single
remaining element. Hence, at most 2k 4+ 2 = 2/ogon + 2
comparisons are made. ©(logn)

18/18

