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Division
Definition
If a and b are integers with a # 0, then a divides b if there exists
an integer c such that b = ac

Theorem
Let a, b, ¢ be integers, where a # 0
1. If a|b and alc, then a|(b + )

2. If alb, then a|bc
3. Ifa|lb and b

¢, then alc

29



Division

Definition
If a and b are integers with a # 0, then a divides b if there exists
an integer c such that b = ac

Theorem

Let a, b, ¢ be integers, where a £ 0
1. If a|b and a|c, then a|(b + ¢)
2. If alb, then a|bc
3. If a|b and b|c, then a|c

Proof
1. a|lb & Fkp. b=kp-aand alc & k.. ¢ = k. - a. But then
b+ ¢ = (kp + kc) - a which by definition implies that a|(b + ¢)
2. alb < 3Fkp. b= kp-a. But then bc = ky - a- ¢ which by
definition implies that a|bc
3. alb & Jkp. b= kp-aand blc < Fkc. ¢ = ke - b. But then
¢ = k¢ - kp - a which by definition implies that"a|c
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Division algorithm

If a is an integer and d a positive integer, then there are unique
integers q and r, with 0 < r < d, such that a=dq+r
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Division algorithm

Theorem

If a is an integer and d a positive integer, then there are unique
integers q and r, with 0 < r < d, such that a=dq+ r

Proof (by contradiction) Assume 3q1, g2, r1, r2 such that
a=dq; +nr, a=dg+nr, and (q1,n) # (g2, r2). But then,
d = n—nmrn

g2 — q1

Now since 0 < rp,» < m, it must be that —d <, — n < d. But
since g1, g2 € 7Z, it necessarily is the case that

rn—nr
@ —aq1

—d < <d

Which contradicts our hypothesis that d = ﬁ.
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Congruence relation

Definition
If a and b are integers and m is a positive integer, then a is
congruent to b modulo m, denoted a = b (mod m), iff m|(a — b)

Example

17 = 5 (mod 6) because 6 divides 17 — 5 =12
24 = 14 (mod 6) because 24 — 14 = 10 is not divisible by 6
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A theorem on congruences

Let m be a positive integer. The integers a and b are congruent
modulo m iff there is an integer k such that a = b+ km
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A theorem on congruences

Definition
Let m be a positive integer. The integers a and b are congruent
modulo m iff there is an integer k such that a = b+ km

Proof

(<) If a= b (mod m), then by the definition of congruence
m|(a — b). Hence, there is an integer k such that a — b = km and
equivalently a = b + km

(=) If there is an integer k such that a = b+ km, then
km = a — b. Hence, m|(a— b) and a = b (mod m)
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Congruences of sums, differences, and products

Let m be a positive integer. If a= b (mod m) and
¢ =d (mod m), then a+ c = b+ d (mod m),

a—c=b—d (modm), and ac = bd (mod m)
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Congruences of sums, differences, and products

Theorem

Let m be a positive integer. If a= b (mod m) and
¢ =d (mod m), then a4+ c = b+ d (mod m),
a—c=b—d (modm), and ac = bd (mod m)

Proof
Since a= b (mod m) and ¢ = d (mod m), by the Theorem above
there are integers s and t with b=a -+ sm and d = c + tm.
Therefore, b+ d = (a+ sm) + (c + tm) = (a+ ¢) + m(s + t), and
bd = (a+ sm)(c + tm) = ac + m(at + ¢s + stm). Hence,
a+c=b+d (mod m) and ac = bd (mod m)
Corollary
Let m be a positive integer and let a and b be integers. Then

e (a+ b) mod m = ((a mod m)+ (b mod m)) mod m

e ab mod m = ((a mod m)(b mod m)) mod m
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Arithmetic modulo m

o Let Zym={0,1,--- ,m—1}

e Theoperation +, is defined as a+,, b = (a+ b) mod m. This
is addition modulo m

o Theoperation -p, is defined as a-p, b = (a- b) mod m. This is
multiplication modulo m

e Using these operations is said to be doing arithmetic modulo
m

Example Find 743119 and 7119

Solution Using the definitions above:
74119=(74+9) mod 11 =16 mod 11 =5 and
7-119=(7-9) mod 11 =63 mod 11 =8
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Arithmetic modulo m

The operations +,, and -, satisfy many of the same properties as
ordinary addition and multiplication

Closure If a, b € Z,, then a+,, b and a -, b belong to Z,
Associativity If a, b, ¢ € Zp,, then (a4+m b) +mc=a+m(b+mc)
and (a-mb) mc=a-m(b-mc)

Commutativity If a, b € Z,, then a+,, b= b +,, a and
amb=b-pa

Identity elements The elements 0 and 1 are identity elements for
addition and multiplication modulo m, respectively. If a € Z,, then
at+m0O=aanda-,,1=a

Additive inverses If 0 # a € Z;,, then m — a is the additive inverse
of a modulo m. Moreover, 0 is its own additive inverse
a+m(m—a)=0and 0+,0=0

Distributivity If a, b, ¢ € Z,, then
am(b+mec)=(amb)+m(a-mc) and

(a+mb) 'mcz(a'mc)+m(b'mc)
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Multiplicative inverses

Addition and multiplication mod m is easy. What about division?
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Multiplicative inverses

Addition and multiplication mod m is easy. What about division?
e QOver the reals, dividing by a number x is the same as
multiplying by y = 1/x
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Multiplicative inverses

Addition and multiplication mod m is easy. What about division?
e QOver the reals, dividing by a number x is the same as
multiplying by y = 1/x
e Similarly when we wish to divide by x mod m, we wish to find
y mod m such thatx x - y =1 (mod m)
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Multiplicative inverses

Addition and multiplication mod m is easy. What about division?
e QOver the reals, dividing by a number x is the same as
multiplying by y = 1/x
e Similarly when we wish to divide by x mod m, we wish to find
y mod m such thatx x - y =1 (mod m)

Example Let x =8 and m = 15. Then 2x = 16 = 1 (mod 15), so
2 is a multiplicative inverse of 8 (mod 15)



Multiplicative inverses

Addition and multiplication mod m is easy. What about division?
e QOver the reals, dividing by a number x is the same as
multiplying by y = 1/x
e Similarly when we wish to divide by x mod m, we wish to find
y mod m such thatx x - y =1 (mod m)

Example Let x =8 and m = 15. Then 2x = 16 = 1 (mod 15), so
2 is a multiplicative inverse of 8 (mod 15)

Example Let x =12 and m = 15. Then the sequence
{ax (mod m) | a=0,1,2,...} is periodic, and takes on the values
{0,12,9,6,3}. Thus 12 has no multiplicative inverse mod 15
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Multiplicative inverses

Addition and multiplication mod m is easy. What about division?
e QOver the reals, dividing by a number x is the same as
multiplying by y = 1/x
e Similarly when we wish to divide by x mod m, we wish to find
y mod m such thatx x -y =1 (mod m)

Example Let x =8 and m = 15. Then 2x = 16 = 1 (mod 15), so
2 is a multiplicative inverse of 8 (mod 15)

Example Let x =12 and m = 15. Then the sequence
{ax (mod m) | a=0,1,2,...} is periodic, and takes on the values
{0,12,9,6,3}. Thus 12 has no multiplicative inverse mod 15

Or «Fr 2> B> B

fae
9/29



Primes

Definition
A positive integer p > 1 is called prime iff the only positive factors
of p are 1 and p. Otherwise it is called composite

Theorem (Fundamental Theorem of Arithmetic)

Every positive integer greater than 1 can be written uniquely as a
prime or as the product of its prime factors, written in order of
nondecreasing size.

Proof by induction (see slides on induction)

Example 765 =3-3-.5-17=32.5.17
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There are infinitely many primes - Euclid (325-265
BCE)

Lemma Every natural number greater than one is either prime or it
has a prime divisor

11/29



There are infinitely many primes - Euclid (325-265
BCE)

Lemma Every natural number greater than one is either prime or it
has a prime divisor

Proof Suppose towards a contradiction that there are only finitely
many primes p1, p2, pP3, ..., Pk. Consider the number

q = p1p2p3 ... Pk + 1, the product of all the primes plus one. By
hypothesis g cannot be prime because it is strictly larger than all
the primes. Thus, by the lemma, it has a prime divisor, p. Because
pP1. P2, P3, ..., Pk are all the primes, p must be equal to one of
them, so p is a divisor of their product. So we have that p divides
p1p2p3 ... Pk , and p divides g, but that means p divides their
difference, which is 1. Therefore p < 1. Contradiction. Therefore
there are infinitely many primes. U
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The Sieve of Eratosthenes (276-194 BCE)

How to find all primes between 2 and n?
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The Sieve of Eratosthenes (276-194 BCE)

How to find all primes between 2 and n?

A very inefficient method of determining if a number n is
prime
Try every integer i < \/n and see if n is divisible by i:

1. Write the numbers 2, ..., n into a list. Let i :=2

2. Remove all strict multiples of i from the list

3. Let k be the smallest number present in the list s.t. kK > /.
Then let i := k

4. If i > /n then stop else go to step 2

Testing if a number is prime can be done efficiently in polynomial
time [Agrawal-Kayal-Saxena 2002], i.e., polynomial in the number
of bits used to describe the input number. Efficient randomized
tests had been available previously.
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Greatest common divisor

Definition

Let a, b € Z — {0}. The largest integer d such that d|a and also

d|b is called the greatest common divisor of a and b. It is denoted
by gcd(a, b)

Example gcd(24,36) = 12
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Greatest common divisor

Definition
Let a, b € Z — {0}. The largest integer d such that d|a and also

d|b is called the greatest common divisor of a and b. It is denoted
by gcd(a, b)

Example gcd(24,36) = 12

Definition
The integers a and b are relatively prime (coprime) iff gcd(a, b) = 1J

Example 17 and 22 (Note that 22 is not a prime)
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Gcd by Prime Factorizations

ai a2

Suppose that the prime factorizations of a and b are:
4= P1 P2

n _ b b ,
- p3 b=p'py - pp
where each exponent is a nonnegative integer (possibly zero). Then
ged(a, b) = p;nin(ahbl)p;nin(az,bz) )

. p,r,nin(a,,,b,,)
This number clearly divides a and b. No larger number can divide

both a and b. Proof by contradiction and the prime factorization
of a postulated larger divisor.

Qe
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Euclidian algorithm

Euclidian algorithm
algorithm gcd(x,y)
if y =20
then return(x)

else return(gcd(y,x mod y))

Thed Euclidian algorithm relies on the fact that

Vx,y € Z. x >y — ged(x, y) = ged(y, x mod y)



Euclidian algorithm (proof of correctness)

Let a = bg + r,where a, b, g, and r are integers. Then
gcd(a, b) = ged(b, r)
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Euclidian algorithm (proof of correctness)

Lemma

Let a = bg + r,where a, b, g, and r are integers. Then
gcd(a, b) = ged(b, r)

Proof

(=) Suppose that d divides both a and b. Then d also divides
a— bg = r. Hence, any common divisor of a and b must also be a
common divisor of b and r

(«<=) Suppose that d divides both b and r. Then d also divides

bg 4+ r = a. Hence, any common divisor of b and r must also be a
common divisor of a and b.

Therefore, ged(a, b) = ged(b, r)
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Multiplicative inverses

Let m, x be positive integers. gcd(m,x) =1 iff x has a

multiplicative inverse modulo m (and it is unique (modulo m)).
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Multiplicative inverses

Theorem
Let m, x be positive integers. gcd(m,x) =1 iff x has a
multiplicative inverse modulo m (and it is unique (modulo m)).

Proof (=) Consider the sequence of m numbers

0, x,2x,...(m — 1)x. We first show that these are all distinct
modulo m.

To verify the above claim, suppose that ax mod m = bx mod m)
for two distinct values a, b in the range 0 < a,b < m—1. Then we
would have (a — b)x = 0(mod m), or equivalently, (a — b)x = km
for some integer k. But since x and m are relatively prime, it
follows that a — b must be an integer multiple of m. This is not
possible since a,b are distinct non-negative integers less than m.
Now, since there are only m distinct values modulo m, it must
then be the case that ax = 1(mod m) for exactly one a (modulo
m). This a is the unique multiplicative inverse.
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Gcd as a linear combination

Theorem (Bézout's theorem)

If x and y are positive integers, then there exist integers a and b
such that gcd(x,y) = ax+ by  (Proof in exercises of Section 5.2)

Example 2 = gcd(6,14) = (—2) -6+ 1-14

Extended Euclidian algorithm

The Bézout coefficients can be computed as follows:
algorithm extended-gcd(x,y)

if y =0
then return(x, 1, 0)
else

(d, a, b) := extended-gcd(y, x mod y)
return((d, b, a - (x div y) * b))
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The multiplicative group 77

Definition
Let Z}, = {x | 1 < x < m and gcd(x, m) = 1}. Together with
multiplication modulo m, this is called the multiplicative group

modulo m. It is closed, associative, has a neutral element (namely
1) and every element has an inverse.




Fermat’s little theorem

Theorem

If p is prime and p Ja, then aP~ =1 (mod p). Furthermore, for
every integer a we have aP = a (mod p)

Fermat'’s little theorem is useful in computing the remainders
modulo p of large powers of integers

Example Find 7222 mod 11

By Fermat's little theorem, we know that 7% = 1 (mod 11), and
so (719 = 1 (mod 11) for every positive integer k. Therefore,
7222 = 72=1042 — (710)22. 72 = 122 .49 = 5 (mod 11). Hence,
772 mod 11 =5
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Public-key encryption in pictures

‘

e
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Public-key encryption in pictures

From Alice: | want to send you a secret
[

e

DA
22/29



Public-key encryption in pictures

Bob
From Alice: | want to send you a secret
[

5
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Public-key encryption in pictures

Bob
From Alice: | want to send you a secret
[
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Public-key encryption in pictures

Bob
From Alice: | want to send you a secret

5
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Public-key encryption in pictures

Bob
From Alice: | want to send you a secret
[
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RSA: key generation

Choose two distinct prime numbers p and g. Prime integers
can be efficiently found using a primality test

Let n=pg and k = (p—1)(g — 1). (In particular, k =1|Z,|)

Choose an integer e such that 1 < e < k and gecd(e, k) = 1,
i.e. e and k are coprime

(n,e) is released as the public key

Let d be the multiplicative inverse of e modulo k, i.e.
de =1 (mod k). (Computed using the extendedE uclidean
algorithm)

(n, d) is the private key and kept secret
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RSA: encryption and decryption

Alice transmits her public key (n, ) to Bob and keeps the private
key secret

Encryption If Bob wishes to send message M to Alice.

1. He turns M into an integer m, such that 0 < m < n by using
an agreed-upon reversible protocol known as a padding
scheme

2. He computes the ciphertext ¢ corresponding to
¢ = m® mod n. This can be done quickly using the method of
exponentiation by squaring.

3. Bob transmits ¢ to Alice.

Decryption Alice can recover m from ¢ by
1. Using her private key exponent d via computing
m = c? mod n

2. Given m, she can recover the original message M by reversing
the padding scheme
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RSA: correctness of decryption

Given that ¢ = m® mod n, is m = ¢? mod n?
c? = (m®) = m* (mod n)

By construction, d and e are each others multiplicative inverses
modulo k, i.e. ed =1 (mod k). Also k =(p—1)(g —1). Thus
ed —1=h(p—1)(g— 1) for some integer h. We consider

m® mod p

If p fm then

med = mh(P=D@-1)m = (mP~ e m = 19D m = m (mod p)
(by Fermat's little theorem)

Otherwise m®*@ =0 = m (mod p)

Symmetrically, m*@ = m (mod q)

Since p, g are distinct primes, we have m®® = m (mod pq). Since
n = pq, we have c?m® = m (mod n)

29 /29



