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Division

Definition

If a and b are integers with a 6= 0, then a divides b if there exists
an integer c such that b = ac

Theorem

Let a, b, c be integers, where a 6= 0

1. If a|b and a|c, then a|(b + c)

2. If a|b, then a|bc
3. If a|b and b|c, then a|c

Proof
1. a|b , 9kb. b = kb · a and a|c , 9kc . c = kc · a. But then

b+ c = (kb + kc) · a which by definition implies that a|(b+ c)
2. a|b , 9kb. b = kb · a. But then bc = kb · a · c which by

definition implies that a|bc
3. a|b , 9kb. b = kb · a and b|c , 9kc . c = kc · b. But then

c = kc · kb · a which by definition implies that a|c
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Division algorithm

Theorem

If a is an integer and d a positive integer, then there are unique

integers q and r , with 0  r < d, such that a = dq + r

Proof (by contradiction) Assume 9q1, q2, r1, r2 such that
a = dq1 + r1, a = dq2 + r2, and (q1, r1) 6= (q2, r2). But then,

d =
r1 � r2

q2 � q1

Now since 0  r1, r2 < m, it must be that �d < r1 � r2 < d . But
since q1, q2 2 Z, it necessarily is the case that

�d <
r1 � r2

q2 � q1
< d

Which contradicts our hypothesis that d = r1�r2
q2�q1

.
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Congruence relation

Definition

If a and b are integers and m is a positive integer, then a is
congruent to b modulo m, denoted a ⌘ b (mod m), i↵ m|(a� b)

Example
17 ⌘ 5 (mod 6) because 6 divides 17� 5 = 12
24 ⌘ 14 (mod 6) because 24� 14 = 10 is not divisible by 6
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A theorem on congruences

Definition

Let m be a positive integer. The integers a and b are congruent
modulo m i↵ there is an integer k such that a = b + km

Proof

(() If a ⌘ b (mod m), then by the definition of congruence
m|(a� b). Hence, there is an integer k such that a� b = km and
equivalently a = b + km

()) If there is an integer k such that a = b + km, then
km = a� b. Hence, m|(a� b) and a ⌘ b (mod m)
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Congruences of sums, di↵erences, and products

Theorem

Let m be a positive integer. If a ⌘ b (mod m) and
c ⌘ d (mod m), then a+ c ⌘ b + d (mod m),
a� c ⌘ b � d (mod m), and ac ⌘ bd (mod m)

Proof
Since a ⌘ b (mod m) and c ⌘ d (mod m), by the Theorem above
there are integers s and t with b = a+ sm and d = c + tm.
Therefore, b + d = (a+ sm) + (c + tm) = (a+ c) +m(s + t), and
bd = (a+ sm)(c + tm) = ac +m(at + cs + stm). Hence,
a+ c ⌘ b + d (mod m) and ac ⌘ bd (mod m)

Corollary

Let m be a positive integer and let a and b be integers. Then

• (a+ b) mod m = ((a mod m) + (b mod m)) mod m

• ab mod m = ((a mod m)(b mod m)) mod m

6 / 29



Congruences of sums, di↵erences, and products

Theorem

Let m be a positive integer. If a ⌘ b (mod m) and
c ⌘ d (mod m), then a+ c ⌘ b + d (mod m),
a� c ⌘ b � d (mod m), and ac ⌘ bd (mod m)

Proof
Since a ⌘ b (mod m) and c ⌘ d (mod m), by the Theorem above
there are integers s and t with b = a+ sm and d = c + tm.
Therefore, b + d = (a+ sm) + (c + tm) = (a+ c) +m(s + t), and
bd = (a+ sm)(c + tm) = ac +m(at + cs + stm). Hence,
a+ c ⌘ b + d (mod m) and ac ⌘ bd (mod m)

Corollary

Let m be a positive integer and let a and b be integers. Then

• (a+ b) mod m = ((a mod m) + (b mod m)) mod m

• ab mod m = ((a mod m)(b mod m)) mod m

6 / 29



Arithmetic modulo m

• Let Zm = {0, 1, · · · ,m � 1}
• Theoperation +m is defined as a+m b = (a+ b) mod m. This
is addition modulo m

• Theoperation ·m is defined as a ·m b = (a · b) mod m. This is
multiplication modulo m

• Using these operations is said to be doing arithmetic modulo
m

Example Find 7 +11 9 and 7 ·11 9
Solution Using the definitions above:
7 +11 9 = (7 + 9) mod 11 = 16 mod 11 = 5 and
7 ·11 9 = (7 · 9) mod 11 = 63 mod 11 = 8
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Arithmetic modulo m

The operations +m and ·m satisfy many of the same properties as
ordinary addition and multiplication

Closure If a, b 2 Zm, then a+m b and a ·m b belong to Zm

Associativity If a, b, c 2 Zm, then (a+m b) +m c = a+m (b +m c)
and (a ·m b) ·m c = a ·m (b ·m c)

Commutativity If a, b 2 Zm, then a+m b = b +m a and
a ·m b = b ·m a

Identity elements The elements 0 and 1 are identity elements for
addition and multiplication modulo m, respectively. If a 2 Zm then
a+m 0 = a and a ·m 1 = a

Additive inverses If 0 6= a 2 Zm, then m � a is the additive inverse
of a modulo m. Moreover, 0 is its own additive inverse
a+m (m � a) = 0 and 0 +m 0 = 0

Distributivity If a, b, c 2 Zm, then
a ·m (b +m c) = (a ·m b) +m (a ·m c) and
(a+m b) ·m c = (a ·m c) +m (b ·m c) 8 / 29



Multiplicative inverses

Addition and multiplication mod m is easy. What about division?

• Over the reals, dividing by a number x is the same as
multiplying by y = 1/x

• Similarly when we wish to divide by x mod m, we wish to find
y mod m such thatx x · y ⌘ 1 (mod m)

Example Let x = 8 and m = 15. Then 2x = 16 ⌘ 1 (mod 15), so
2 is a multiplicative inverse of 8 (mod 15)

Example Let x = 12 and m = 15. Then the sequence
{ax (mod m) | a = 0, 1, 2, ...} is periodic, and takes on the values
{0, 12, 9, 6, 3}. Thus 12 has no multiplicative inverse mod 15

Not all integers have an inverse mod m
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Primes

Definition

A positive integer p > 1 is called prime i↵ the only positive factors
of p are 1 and p. Otherwise it is called composite

Theorem (Fundamental Theorem of Arithmetic)

Every positive integer greater than 1 can be written uniquely as a

prime or as the product of its prime factors, written in order of

nondecreasing size.

Proof by induction (see slides on induction)

Example 765 = 3 · 3 · 5 · 17 = 32 · 5 · 17
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There are infinitely many primes - Euclid (325-265

BCE)

Lemma Every natural number greater than one is either prime or it
has a prime divisor

Proof Suppose towards a contradiction that there are only finitely
many primes p1, p2, p3, . . . , pk . Consider the number
q = p1p2p3 . . . pk + 1, the product of all the primes plus one. By
hypothesis q cannot be prime because it is strictly larger than all
the primes. Thus, by the lemma, it has a prime divisor, p. Because
p1, p2, p3, . . . , pk are all the primes, p must be equal to one of
them, so p is a divisor of their product. So we have that p divides
p1p2p3 . . . pk , and p divides q, but that means p divides their
di↵erence, which is 1. Therefore p  1. Contradiction. Therefore
there are infinitely many primes. ⇤
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The Sieve of Eratosthenes (276-194 BCE)

How to find all primes between 2 and n?

A very ine�cient method of determining if a number n is

prime

Try every integer i 
p
n and see if n is divisible by i :

1. Write the numbers 2, . . . , n into a list. Let i := 2

2. Remove all strict multiples of i from the list

3. Let k be the smallest number present in the list s.t. k > i .
Then let i := k

4. If i >
p
n then stop else go to step 2

Testing if a number is prime can be done e�ciently in polynomial
time [Agrawal-Kayal-Saxena 2002], i.e., polynomial in the number
of bits used to describe the input number. E�cient randomized
tests had been available previously.
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Greatest common divisor

Definition

Let a, b 2 Z� {0}. The largest integer d such that d |a and also
d |b is called the greatest common divisor of a and b. It is denoted
by gcd(a, b)

Example gcd(24, 36) = 12

Definition

The integers a and b are relatively prime (coprime) i↵ gcd(a, b) = 1

Example 17 and 22 (Note that 22 is not a prime)
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Gcd by Prime Factorizations

Suppose that the prime factorizations of a and b are:

a = p

a1
1 p

a2
2 · · · pann b = p

b1
1 p

b2
2 · · · pbnn

where each exponent is a nonnegative integer (possibly zero). Then

gcd(a, b) = p

min(a1,b1)
1 p

min(a2,b2)
2 · · · pmin(an,bn)

n

This number clearly divides a and b. No larger number can divide
both a and b. Proof by contradiction and the prime factorization
of a postulated larger divisor.

Factorization is a very ine�cient method to compute gcd. The
Euclidian algorithm is much better.
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Euclidian algorithm

Euclidian algorithm

algorithm gcd(x,y)

if y = 0

then return(x)

else return(gcd(y,x mod y))

Thed Euclidian algorithm relies on the fact that
8x , y 2 Z. x > y ! gcd(x , y) = gcd(y , x mod y)
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Euclidian algorithm (proof of correctness)

Lemma

Let a = bq + r ,where a, b, q, and r are integers. Then
gcd(a, b) = gcd(b, r)

Proof
()) Suppose that d divides both a and b. Then d also divides
a� bq = r . Hence, any common divisor of a and b must also be a
common divisor of b and r

(() Suppose that d divides both b and r . Then d also divides
bq + r = a. Hence, any common divisor of b and r must also be a
common divisor of a and b.
Therefore, gcd(a, b) = gcd(b, r)
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Multiplicative inverses

Theorem

Let m, x be positive integers. gcd(m, x) = 1 i↵ x has a

multiplicative inverse modulo m (and it is unique (modulo m)).

Proof ()) Consider the sequence of m numbers
0, x , 2x , ...(m � 1)x . We first show that these are all distinct
modulo m.
To verify the above claim, suppose that ax mod m = bx mod m)
for two distinct values a, b in the range 0  a, b  m� 1. Then we
would have (a� b)x ⌘ 0(mod m), or equivalently, (a� b)x = km

for some integer k. But since x and m are relatively prime, it
follows that a� b must be an integer multiple of m. This is not
possible since a,b are distinct non-negative integers less than m.
Now, since there are only m distinct values modulo m, it must
then be the case that ax ⌘ 1(mod m) for exactly one a (modulo
m). This a is the unique multiplicative inverse.
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Gcd as a linear combination

Theorem (Bézout’s theorem)

If x and y are positive integers, then there exist integers a and b

such that gcd(x , y) = ax + by (Proof in exercises of Section 5.2)

Example 2 = gcd(6, 14) = (�2) · 6 + 1 · 14

Extended Euclidian algorithm

The Bézout coe�cients can be computed as follows:
algorithm extended-gcd(x,y)

if y = 0

then return(x, 1, 0)

else

(d, a, b) := extended-gcd(y, x mod y)

return((d, b, a - (x div y) * b))
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The multiplicative group Z⇤
m

Definition

Let Z⇤
m = {x | 1  x < m and gcd(x ,m) = 1}. Together with

multiplication modulo m, this is called the multiplicative group
modulo m. It is closed, associative, has a neutral element (namely
1) and every element has an inverse.
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Fermat’s little theorem

Theorem

If p is prime and p 6 |a, then a

p�1 ⌘ 1 (mod p). Furthermore, for

every integer a we have a

p ⌘ a (mod p)

Fermat’s little theorem is useful in computing the remainders
modulo p of large powers of integers

Example Find 7222 mod 11

By Fermat’s little theorem, we know that 710 ⌘ 1 (mod 11), and
so (710)k ⌘ 1 (mod 11) for every positive integer k . Therefore,
7222 = 722=·10+2 = (710)22 · 72 ⌘ 122 · 49 ⌘ 5 (mod 11). Hence,
7222 mod 11 = 5
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Public-key encryption in pictures

Alice  Bob 
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RSA: key generation

• Choose two distinct prime numbers p and q. Prime integers
can be e�ciently found using a primality test

• Let n = pq and k = (p � 1)(q � 1). (In particular, k = |Zn|)

• Choose an integer e such that 1 < e < k and gcd(e, k) = 1;
i.e. e and k are coprime

• (n, e) is released as the public key

• Let d be the multiplicative inverse of e modulo k , i.e.
de ⌘ 1 (mod k). (Computed using the extendedE uclidean
algorithm)

• (n, d) is the private key and kept secret
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RSA: encryption and decryption

Alice transmits her public key (n, e) to Bob and keeps the private
key secret

Encryption If Bob wishes to send message M to Alice.

1. He turns M into an integer m, such that 0  m < n by using
an agreed-upon reversible protocol known as a padding
scheme

2. He computes the ciphertext c corresponding to
c = m

e mod n. This can be done quickly using the method of
exponentiation by squaring.

3. Bob transmits c to Alice.

Decryption Alice can recover m from c by

1. Using her private key exponent d via computing
m = c

d mod n

2. Given m, she can recover the original message M by reversing
the padding scheme
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RSA: correctness of decryption

Given that c = m

e mod n, is m = c

d mod n?

c

d = (me)d ⌘ m

ed (mod n)

By construction, d and e are each others multiplicative inverses
modulo k , i.e. ed ⌘ 1 (mod k). Also k = (p � 1)(q � 1). Thus
ed � 1 = h(p � 1)(q � 1) for some integer h. We consider
m

ed mod p

If p 6 |m then
m

ed = m

h(p�1)(q�1)
m = (mp�1)h(q�1)

m ⌘ 1h(q�1)
m ⌘ m (mod p)

(by Fermat’s little theorem)
Otherwise m

ed ⌘ 0 ⌘ m (mod p)
Symmetrically, med ⌘ m (mod q)
Since p, q are distinct primes, we have m

ed ⌘ m (mod pq). Since
n = pq, we have c

d
m

ed ⌘ m (mod n)

29 / 29


