FOR INTERNAL SCRUTINY (date of this version: 16/11/2014)

UNIVERSITY OF EDINBURGH COLLEGE OF SCIENCE AND ENGINEERING SCHOOL OF INFORMATICS

DISCRETE MATHEMATICS AND MATHEMATICAL REASONING

Tuesday 1st April 2014

00:00 to 00:00

INSTRUCTIONS TO CANDIDATES

- 1. Answer all five questions in Part A, and two out of three questions in Part B. Each question in Part A is worth 10% of the total exam mark; each question in Part B is worth 25%.
- 2. Use a single script book for all questions.
- 3. CALCULATORS MAY NOT BE USED FOR THIS EXAM.

THIS EXAMINATION WILL BE MARKED ANONYMOUSLY

PART A

ANSWER ALL QUESTIONS IN PART A

1. A relation R over A is called circular if for all $a,b,c\in A,\ aRb$ and bRc imply cRa.

(a) Recall the definition of a reflexive relation.	[1 mark]
(b) Recall the definition of a transitivity relation.	[1 mark]
(c) Recall the definition of a symmetric relation.	[1 mark]
(d) Prove that R is reflexive and circular if and only if R is an equivalence relation.	[7 marks]
2. Let $\{0,1\}^*$ denote the set of all binary strings. Write $y \cdot z$ for the concatenation of the strings y and z . Prove by induction that every string $x \in \{0,1\}^*$ can be written in the form $x = y \cdot z$ where the number of 0's in y is the same as the number of 1's in z . x, y and z can be the empty string denoted ε . For instance, $01001 = 01 \cdot 001$; $111011 = 11101 \cdot 1$; and $00000 = \varepsilon \cdot 00000$.	
(a) Prove the base step.	[2 marks]
(b) State the inductive hypothesis.	[2 marks]
(c) Prove the inductive step.	[6 marks]
3. Consider the following algorithm	
<pre>procedure ex1([a₁,, a_n]) i:= 1 while i<n j:= i+1 while j \le n if $a_i = a_j$ then return i else j:= j+1 i:= i+1 return -1</n </pre>	
(a) Apply the procedure ex1 to the sequences	[2 marks]
$\bar{a} = [5, 6, 1, 21, 3, 5, 7]$ $\bar{c} = [5, 6, 1, 21, 3, 9, 7]$	
(b) What does this procedure do?	[1 mark]

Page 1 of 5

	(c)	Given an input sequence \overline{i} of size n , we let A_n denote the number of com- parisons (tests \leq or =) performed by the procedure ex1 on \overline{i} . Give a closed formula for A_n . Justify your answer.	[2 marks]
	(d)	Prove that $A_n \in \Theta(n^2)$:	
		i. give the witnesses k and C for $A_n \in \mathcal{O}(n^2)$, and justify your answer;	[2 marks]
		ii. give the witnesses k and C for $A_n \in \Omega(n^2)$, and justify your answer.	[3 marks]
4.	(a)	Prove the following pigeonhole principle. If $N \ge 0$ objects are placed in $k \ge 1$ boxes, then at least one box contains at least $\left\lceil \frac{N}{k} \right\rceil$ objects.	[5 marks]
	(b)	During a three week period of 21 days a shinty team play at least one game a day, but no more than 30 games. Show that there must be a period of some consecutive days during which the team plays exactly 11 games.	[5 marks]
5.	(a)	Show that if 7 integers are selected from the first 10 positive integers, there must be at least two pairs of these with the sum 11	[3 marks]
	(b)	Is the conclusion in part a) still true if six integers are selected rather than seven	[2 marks]
	(c)	Assume you have a set S of $2k$ numbers, which are partitioned into k disjoint pairs. Prove that selecting $k + n$ (with $n \ge 1$) of the numbers from S will	[~]]
		select both numbers of at least n of the pairs.	[5 marks]

PART B

ANSWER TWO QUESTIONS FROM PART B

- 6. Let p be a prime number. The purspose of this exercice is to prove that $(p-1) \equiv (p-1)! \pmod{p}$
 - (a) Let (Z_p)* = {1,..., p − 1}. Prove that any integer x ∈ (Z_p)* has an inverse mod p. [3 marks]
 (b) What is the multiplicative inverse of 21 in mod 31 arithmetic? [3 marks]
 (c) Prove that the only integers in (Z_p)* that are their own inverse in mod p arithmetic are 1 and p − 1. [3 marks]
 - (d) Prove that no two distinct integers in (Z_p)* have the same multiplicative inverse.
 [Hint: Prove this by contradition] [8 marks]
 - (e) Using items 6a, 6c and 6d, prove that $(p-1) \equiv (p-1)! \pmod{p}$ [**Hint:** Distinguish the case p = 2 from the case p > 2] [8 marks]

FOR INTERNAL SCRUTINY (date of this version: 16/11/2014)

7. Let G be an undirected graph with vertices V and edges E .	
(a) Give the definition of Graph G is connected	[4 marks]
(b) Show that if we can make G connected by inserting $k-1$ edges, then G can have at most k connected components.	[5 marks]
(c) Assume G is connected. Choose a vertex x and remove it from the set of vertices along with any edge connecting to x. This operation transforms the connected graph G into a set of connected components. We call this graph $G - x$. Show an upper and a lower bound of the number of connected components created by this step in terms of the degree of x. Show that your bounds are exact by giving an example graph G and an example vertex x where $G - x$ has exactly that many components.	[8 marks]
(d) Show the following theorem Every connected graph $G = (V, E)$ with $ V \ge 2$ has at least two vertices x_1, x_2 such that both $G - x_1$ and $G - x_2$ are connected.	[8 marks]

8. Recall that the expected value of the random variable X on a sample space S is equal to

$$E(X) = \sum_{s \in S} P(s)X(s)$$

where P is the probability distribution on S.

- (a) Consider an octal dice which has eight faces and when rolled gives any value from 1 to 8. What is the expected number that appear when a fair octal dice is rolled ? Show your calculations.
 [5 marks]
- (b) Prove the following that expected values are linear. For any random variables X, X_1, \ldots, X_n on S and $a, b \in \mathbb{R}$ [7 marks]

i.
$$E(X_1 + X_2 + \ldots + X_n) = E(X_1) + \ldots + E(X_n).$$

ii. $E(a X + b) = a E(X) + b.$

- (c) What is the expected sum of the numbers that appear when five fair octal dice are rolled ? Show your calculations. [5 marks]
- (d) The variance of X, V(X), is defined by:

$$V(X) = E((X - E(X))^2) = \sum_{s \in S} (X(s) - E(X))^2 P(s)$$

Prove the following property of variance.

$$V(X) = E(X^2) - E(X)^2$$

[8 marks]