
Module Title: dmmr
Exam Diet (Dec/April/Aug): Sample 2014
Brief notes on answers:
PART A

1. (a) A relation R over A is reflexive if for all a ∈ A aRa.

(b) A relation R over A is transitive if for all a, b, c ∈ A, if aRb and bRc then aRc.

(c) A relation R over A is symmetric if for all a, b ∈ A, if aRb then bRa.

(d) (⇒) An equivalence relation is a relation that is reflexive, symmetric, and tran-
sitive. Thus we just need to prove that R is symmetric and transitive.

Symmetry Let a, b ∈ A such that aRb. By reflexivity of R we have that aRa.
But then by circularity of R, because aRa and aRb, we also have that bRa.
Thus R is symmetric.

Transitivity Let a, b, c ∈ A such that aRb and bRc. By circularity we have
that cRa. But we just proved that R is symmetric, so we can conclude that
aRc, and thus that R is transitive.

(⇐) We just need to prove that R is circular. Let a, b, c ∈ A such that aRb and
bRc. By transitivity of equivalence relations we have that aRc. But then by
symmetry of equivalence relations we have that cRa. Thus R is circular.

2. Let x be a string in {0, 1}∗. We will denote |x|0 the number of 0’s in x, and |x|1 the
number of 1’s in x. We prove this by induction on the length ` of x.

Base case (` = 0). In that case, x is the empty string. If we let y = z = ε, then we
do have that x = ε = ε · ε = y · z, and |y|0 = 0 = |z|1.

Inductive hypothesis. Let k ∈ N. We assume that for all x ∈ {0, 1}∗, if |x| ≤ k
then there exist y, z ∈ {0, 1}∗ such that x = y · z, and |y|0 = |z|1.

Inductive step (` = k + 1). In that case x = x′ · b with b ∈ {0, 1}, and x′ ∈ {0, 1}∗
such that |x′| = k. By inductive hypothesis we know there exist y′, z′ ∈ {0, 1}∗
such that x′ = y′ · z′, and |y′|0 = |z′|1. We distinguish 2 cases:

Case b = 0. In that case |z′ · b|1 = |z′ · 0|1 = |z′|1, and thus |y′|0 = |z′ · b|1. So
if we let y = y′ and z = z′ · b, we do have that x = x′ · b = y′ · z′ · b = y · z,
and |y|0 = |y′|0 = |z′ · b|1 = |z|1.

Case b = 1. We distinguish three cases

Case z′ = ε. In that case |y′|0 = 0 = |z′|1 and x = y′ · 1. Let y = y′ · 1 and
z = ε. Then we do have that x = y′ · 1 = y′ · 1 · ε = y · z. Furthermore,
|y|0 = |y′ · 1|0 = |y′|0 = 0 = |ε|1 = |z|1.

Case z′ = 0 · z′′. In that case |y′|0 = |z′|1 = |0 · z′′|1 = |z′′|1. Thus |y′ · 0|0 =
1 + |y′|0 = 1 + |z′|1 = 1 + |z′′|1 = |z′′ · 1|1 = |z′′ · b|1. So if we let y = y′ · 0
and z = z′′ · 1, we do have x = y′ · z′ · b = y′ · 0 · z′′ · 1 = y · z, and
|y|0 = |y′ · 0|0 = |y′|0 + 1 = |z′|1 + 1 = |z′′|1 + 1 = |z′′ · 1|1 = |z|1.

Case z′ = 1 · z′′. In that case |y′|0 = |z′|1 = |1 ·z′′|1 = |z′′ ·1|1. Furthermore,
|y′|0 = |y′ · 1|0. So if we let y = y′ · 1 and z = z′′ · 1, we do have
x = y′ · z′ · b = y′ · 1 · z′′ · 1 = y · z, and |y|0 = |y′ · 1|0 = |y′|0 = |z′|1 =
|1 · z′′|1 = |z′′ · 1|1 = |z|1.
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3. (a) The procedure ex3 applied to ā returns 1

The procedure ex3 applied to c̄ returns -1

(b) The procedure ex3 looks for the first element in the sequence given as argument
that occurs twice in that sequence

(c) On an input sequence of sice n, the outer while loop is executed at most n− 1
times. At the ith iteration of the outer while loop, the inner while loop will
be executed at most n − i times (in the case where no element occurs twice in
the input sequence). So the inner while loop will be executed at most

∑n−1
k=1 k

times, and at each of these iterations 2 comparisons are performed (the test that
controls the while loop and the test in the if). Thus, in total the maximum
number of comparisons that can be performed is:

An = n− 1 one comparison at each iteration of the outer while loop
+ 1 the comparison that makes the outer while loop break

+
∑n−1

k=1 2k 2 comparisons at each iteration of the inner while loop
+ n− 1 the comparisons that makes the inner while loop break

= 2n− 1 + 2
∑n−1

k=1 k

= n2 + n− 1

(d) (i). Let k = 1 and C = 2. In that case, we have

∀n ≥ k. n ≤ n2

But this implies that

∀n ≥ k. n2 + n ≤ n2 + n2 = Cn2

Furthermore, we trivially have that

∀n ≥ k. n2 + n− 1 ≤ n2 + n

Combining all these we can conclude that

∀n ≥ k. An = n2 + n− 1 ≤ Cn2

which proves that k = 1 and C = 2 are witnesses that An ∈ O(n2).

(ii). Let k = 1 and C = 1. In that case, we have

∀n ≥ k. n− 1 ≥ 0

But this implies that

∀n ≥ k. An = n2 + n− 1 ≥ n2 = Cn2

which proves that k = 1 and C = 1 are witnesses that An ∈ Ω(n2).

We can finally conclude by definition that An ∈ Θ(n2).
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4. (a) Bookwork. Suppose no box has more than
⌈
N
k

⌉
−1 objects. Sum up the number

of objects in the k boxes. It is at most k · (
⌈
N
k

⌉
− 1) < k · ((N

k
+ 1) − 1) = N .

Thus, there must be fewer than N . Contradiction. Full marks for full answer.
They could do it inductively too.

(b) Let aj be the number of games played on or before the jth day of the three
weeks, 1 ≤ j ≤ 21. So, a1, . . . , a21 is a strictly increasing sequence with a21 = 30.
Consider the second sequence a1+11, . . . , a21+11 which is also strictly increasing
with a21 + 11 = 41; we now have 42 elements and 41 pigeonholes; so ai = aj + 11
for some different i and j. Full marks for a full answer.

5. (a) With in the first 10 positive integers we identify the following pairs that have
sum 11: (1, 10), (2, 9), (3, 8), (4, 7), (5, 6). By the pigeon-hole principle, we can
select at most 5 integers, that are in pairwise distinct pairs. Therefore choosing
the 6th and the 7th number we have to have chosen 2 integers each from the
same set.

(b) No: We can chose the numbers 1, 2, 3, 4, 5, 6. By the list of pairs we have specified
in a) we get that only the pair (5, 6) has sum 11.

(c) Proof by induction over n: As Base case (n = 1) we have the original pigeon hole
principle. Assume now the statement is true for n and look at the statement for
n + 1. Choose k + n elements from S first. We have already chosen at least n
pairs. If we have chosen n + 1 pairs then we are done. If we have not chosen
n+ 1 pairs, then we have chosen 2 ∗n numbers in pairs and the remaining k−n
as singles. As there are only k pairs that means each pair has been chosen either
as single or as pair. By choosing one number more we need to choose a number
from a pair that has already been chosen before. Therefore creating a new pair
in the chosen numbers.

By Induction principle the induction hold therefore for all n ≥ 1

PART B

6. (a) Since p is a prime number, any integer x ∈ (Zp)
∗ is coprime with p, i.e. gcd(x, p) =

1. Thus, according to the theorem seen in lectures x admits an inverse mod p.

(b) It is easy to see that 21 · 3 ≡ 63 ≡ 1 + 31 · 2 ≡ 1 (mod 31).

(c) Let x ∈ (Zp)
∗ that is its own iverse in mod p arithmetic, i.e. x2 ≡ 1 (mod p).

Then x2−1 ≡ 0 (mod p), but this is equivalent to (x−1)(x+1) ≡ 0 (mod p) which
in turn is equivalent to p|(x− 1)(x+ 1). Since p is prime, it must be that either
p|(x− 1) or p|(x + 1). In other words, it must be that either x− 1 ≡ 0 (mod p)
or x+ 1 ≡ 0 (mod p). Hence, either x ≡ −1 (mod p) or x ≡ 1 (mod p). Because
x ∈ (Z)∗, only x = p − 1 satisfies the first possibility, and only x = 1 satisfies
the second. Which concludes our proof.

(d) Assume there exist two distinct integers x, y ∈ (Z)∗ such that x−1 = y−1. Let z
be x−1. That is we assume that x · z ≡ 1 (mod p) and y · z ≡ 1 (mod p). We
further assume without loss of generality that x > y.

It must thus be that z · (x − y) ≡ 0 (mod p), or equivalently that p|z · (x − y).
Now, since z and p are coprime, we know that p 6 |z. Thus, since p is prime, it
must be that p|(x−y). But x, y ∈ (Zp)

∗ and x > y imply that 1 ≤ x−y ≤ p−2.
Then the only way to have p|(x− y) is to have x− y = 0, and thus x = y which
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contradicts our hypothesis. We can hence conclude that all integers in (Zp)
∗

have a different inverst in mod p arithmetic.

(e) We distinguish two cases:

Case p = 2. In that case (p− 1) = (p− 1)! thus (p− 1) ≡ (p− 1)! (mod p).

Case p > 2. In that case there is an even number of intergers in {2, . . . , p −
2}. According to what we showed in items ?? ?? and ??, each integer in
{2, . . . , p−2} has a distinct inverse mod p in {2, . . . , p−2}. Thus each term
in the product 2 . . . (p−2) will pair up with its inverse, that is 2 . . . (p−2) ≡
1 . . . 1 (mod p). Thus (p − 1)! ≡ (p − 1) · 1 . . . 1 ≡ (p − 1) (mod p) which
concludes our proof.

7. (a) The graph G is connected, if for every pair of vertices v, v′ ∈ V there is a path
v → v′. A path is a sequence of edges (v, v1), (v1, v2), ..., (vn, v

′) with (v, v1) ∈ E,
(vi, vi+1) ∈ E and (vn, v

′) ∈ E.

(b) Inserting an edge can only connect two connected components at a time. Assume
a new edge (v, v′) connects 3 components H1, H2 and H3. Take the vertices
v1 ∈ H1, v2 ∈ H2 and v3 ∈ H3. Then there exist two paths that use the edge
(v, v′) in the same direction. Let without loose of generality v1 → v → v′ → v2
and v3 → v → v′ → v2. Then the path v1 → v → v2 is a path that does not use
the new edge. Therefore H1 and H2 where connected before.

After inserting one edge we have reduced G to a graph with k − 1 connected
components and we can apply the same argument again. Therefore the insertion
of each edge reduces the number of connected components by at most 1. Inserting
k − 1 edges reduces the components by k − 1. Since 1 connected component is
left the graph must have had k connected components. further inserted edge can
connect one further connected component. Therefore if we insert k− 1 edges we
can connect at most k connected components.

(c) In G − x there is ate least one connected component and at most deg(x) com-
ponents. As example the star graph V = {v1, ..., vn} with E = {(v1, vi | i ∈
{2, ..., n}}. If we choose x = v1 then G − x does not have any edges and thus
we get n − 1 connected components, which is deg(x). If we choose x to be v2,
then we only remove one edge (v1, v2). v1 is still connected to each other vertex
and thus we still have a path from vi to v1 and further to vj for i, j ∈ {3, ..., n}.
The lower bound does not need to be proved as every graph has at least one
connected component.
The upper bound can be proved in the following way: Assume the vertex x has
degree l. That means the neighbours of x can be written as x1, ..., xl. We now
insert the l − 1 edges (x1, x2), (x2, x3), ..., (xl−1, xl). Consider a path v → v′ in
G: if the path does not use x it is still a path in G − x. If the path did use
the edges (xi, x), (x, xj) (without loss of generality i > j, then we can replace
these two edges by the path (xi, xi+1), (xi+1, xi+2), ..., (xj+1, xj). Since all pairs
of vertices were connected by a path in G we now have a path between each pair
in the modified graph and therefore the Graph is connected. As we have only
inserted l−1 edges compared to G−x we get that G−x has at most l connected
components

(d) We proceed by induction on |V (G)|. As a base case, observe that if G is a
connected graph with |V (G)| = 2, then both vertices of G satisfy the required
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conclusion. For the inductive step, let G be a connected graph with |V (G)| ≥ 2
and assume that the theorem holds for every graph with < |V (G)| vertices. If
G − x is connected for every vertex x ∈ V (G), then we are done, so we may
assume this is not so, and choose x ∈ V (G) so that G − x has components
H1, H2, ..., Hm where m ≥ 2. For every 1 ≤ i ≤ m let H ′i be the graph obtained
from Hi by adding back the vertex x and all edges with one end x and the
other end in V (Hi). So every H ′i is a connected graph with at least two vertices.
Furthermore,|V (H ′i)| < |V (G)|, so by induction, H ′i must have at least one vertex
xi 6= x so that H ′i − xi is connected. It then follows that G − xi is connected.
Since we have such an xi for every component (and at least two components),
this completes the proof.

8. (a) This is the values for 1, . . . , 8

1/8 + 2/8 + 3/8 + 4/8 + 5/8 + 6/8 + 7/8 + 8/8

which is 9/2. Full marks for doing the calculation.

(b) Just a question of calculations:

E(
n∑

i=1

Xi) =
∑
s∈S

P (s)
n∑

i=1

Xi(s) =
n∑

i=1

∑
s∈S

P (s)Xi(s) =
n∑

i=1

E(Xi).

E(aX + b) =
∑
s∈S

P (s)(aX(s) + b) = (a
∑
s∈S

P (s)X(s)) + b
∑
s∈S

P (s)

. Full marks accordingly.

(c) Use linearity to calculate result for five octal dice to get 45/2 (five times 9/2).
Full marks for doing this.

(d) A straightforward calculation does this.

V (X) = E((X − E(X))2)

= E(X2 − 2XE(X) + E(X)2)

= E(X2)− 2E(X)E(X) + E(X)2

= E(X2)− E(X)2.

Full marks again for full answer.

v


