
Module Title: dmmr
Exam Diet (Dec/April/Aug): April 2017
Brief notes on answers:

1. (a) Any correct bijection here such as f(x) = −x which is different from the identity
function.

(i). f : A→ Z+ given as f(x) =
√
x is a bijection. 3 marks for the details.

(ii). f : A→ Z+ given as f(x) = 2x, x > 0 and f(x) = −(2x− 1) for x ≤ 0 is a
bijection; 4 marks for the details.

2. (a) For the base case n = 1. LHS is a as is RHS. 1 mark for this. For the inductive
step assume it holds for n = j. Show it for n = j + 1.

j+1∑
k=1

(a + (k − 1)r) =

j∑
k=1

(a + (k − 1)r) + (a + jr)

Using the IH this is
j

2
(2a + (j − 1)r) + (a + jr)

Now the result follows as this is equal to j+1
2

(2a+ jr). 6 marks here; 3 for using
induction hypothesis and 3 for getting it all correct.

(b) Using Euclid’s algorithm: = gcd(89, 55) = gcd(55, 34) = gcd(34, 21) = gcd(21, 13) =
gcd(13, 8) = gcd(8, 5) = gcd(5, 3) = gcd(3, 2) = gcd(2, 1) = gcd(1, 0) = 1. 3
marks for full answer.

3. (a) Note that since we know that for i ∈ {1, 2, 3}, f(7-i) = 5- f(i), we know that
the values f(i) of the function, for all i ∈ {1, 2, 3}, determine the values of the
function on the entire domain {1, 2, 3, 4, 5, 6}. (Namely, f(1) determines f(6),
and f(2) determines f(5), and f(3) determines f(4).)

Moreover, for each i ∈ {1, 2, 3}, we are free to let f(i) be any value in {1, 2, 3, 4}.
Thus, the number of such functions is the number of distinct functions g :
{1, 2, 3} → {1, 2, 3, 4}. There are thus 43 = 64 distinct such functions.

(b) Each function f : {1, . . . , 7} → {1, . . . , 7} can be described by a sequence
(f(1), f(2), . . . , f(7)) of numbers, each in {1, . . . , 7} such that the i’th number
f(i) is not i. Thus, there are 7−1 = 6 possible choices for the i’th number, f(i),
for all i ∈ {1, . . . , 7}. By the product rule, there are thus 67 such functions.

4. By the binomial theorem, we know that
(n + 1)d =

∑d
i=0

(
d
i

)
ni1d−i =

∑d
i=0

(
d
i

)
ni ≥

∑d
i=0 n

i ≥
∑d

i=0

(
n
i

)
.

The last inequality holds because ni ≥
(
n
i

)
. To see why this is true, note that:(

n
i

)
= n(n−1)...(n−i+1)

i!
≤ n(n− 1) . . . (n− i + 1) ≤ ni.
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5. This is a straightforward application of Bayes’ Theorem. Let A be the event that a
chimp has disease A, and let G be the event that a chimp has that specific gene. We
are told that P (G|A) = 3/5 and P (G|Ā) = 1/10, and that P (A) = 1/6 and (thus)
P (Ā) = 5/6. We are interested in knowing P (A|G). By Bayes’ Theorem, this is:

P (A|G) =
P (G|A)P (A)

P (G|A)P (A) + P (G|Ā)P (Ā)
=

(3/5)(1/6)

(3/5)(1/6) + (1/10)(5/6)

=
(1/10)

(1/10) + (1/12)
=

(12/120)

(22/120)
=

6

11
.
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PART B

6. (a) True. If C ∈ P(A) or P(B) then C ⊆ A or C ⊆ B so therefore C ∈ P(A ∪ B).
3 marks for convincing explanation; only 1 mark without explanation.

(b) True. If C ∈ P(A) and C ∈ P(B) then C ⊆ A and C ⊆ B so C ⊆ A∩B and so
C ∈ P(A∩B). 3 marks for convincing explanation, 1 mark without explanation.

(c) False. If A = {0, 1} and B = {1} then {0, 1} ∈ P(A) but not in P(B); how-
ever P(A − B) = P({0}). As before 3 marks for explanation; 1 mark without
explanation.

(d) False. P(A) × P(B) is a set of set pairs whereas P(A × B) is a set of sets of
pairs: for instance if A = {0, 1} = B then (A,B) is in the first but not in the
second. 3 marks for explanation; 1 mark without explanation.

(e) False. If A = {0} and B = {1} then {0, 1} ∈ P(A∪B) but not in P(A)∪P(B).
3 marks for explanation; 1 mark without explanation.

(f) True. If C ∈ P(A ∩ B) then C ⊆ A and C ⊆ B so C ∈ P(A) ∩ P(B) 4 marks
for explanation; 1 mark without explanation.

(g) True. If C ∈ P(A − B) then C ⊆ A and C ∩ B = ∅ so C ∈ P(A) ∩ P(B) 3
marks for explanation; 1 mark without explanation.

(h) False. P(A × B) is a set of sets of pairs whereas P(A) × P(B) is a set of set
pairs: if A = {0} and B = {1} then {(0, 1)} is an element of the first but not
the second. 3 marks for explanation; 1 mark without explanation.

7. (a) We did this proof in lectures. Consider (a1M1y1 + . . . + anMnyn) mod mi. By
assumption mi divides Mj if j 6= i. So it is equal to aiMiyi mod mi because
cm + d mod m = d mod m. Now we assume yi is inverse of Mi mod mi; so
Miyi ≡ 1 (mod mi). Therefore, x ≡ ai (mod m). 10 marks for adding in all the
details of this answer such as explaining inverses.

(b) Here M1 = 105 and y1 = 1; M2 = 70 and y2 = 1; M3 = 42 and y3 = 3; M4 = 30
and y4 = 4. So the answer is 105 + 140 + 504 + 720 mod 210 = 209. 10 marks
for getting all the details right.

(c) Assume z is another solution; then z ≡ x (mod m1), . . ., z ≡ x (mod mn). But
then since gcd(mi,mj) = 1 for i 6= j it follows that z ≡ x (mod m) as required.
5 marks for full argument.

8. (a) We prove this by contradiction. Suppose not. Then d(u) > (n/2) for all u ∈ V .
But then note that the edge set E is non-empty and for any pair u, v ∈ V such
that {u, v} ∈ E we have d(u) + d(v) > n. But then since there are only n = |V |
vertices, by the pigeon hole principle there must be some vertex w such that
there is an edge between w and both u and v. In other words, there must be
a triangle. This is a contradiction. So, there can not exist any pair of vertices
u, v ∈ E such that {u, v} ∈ E and d(u) + d(v) > n, and hence it can not be the
case that all vertices u have degree d(u) > n/2.

(b) We prove by induction on n ≥ 3 that if G is triangle-free then m ≤ n2

4
. First,

we establish the base cases n = 3 and n = 4. When n = 3, if G is triangle-free it
has at most m = 2 edges, and m ≤ 2 ≤ n2

4
= 9

4
. Next, n = 4. In this case we can
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see that if G is triangle-free, the most number of edges G could have is m = 4,
given by a “rectangle graph”. And again, we see that m ≤ 4 ≤ n2

4
= 16

4
= 4.

Now, for the inductive step, suppose that for some n ≥ 5 the claim holds when
the number of vertices is |V | ≤ n− 2. We show that it holds when the number
of vertices is |V | = n.

Consider any pair of vertices u, v ∈ V , such that {u, v} ∈ E. (If there is no such
pair, then we are done, because m = 0 ≤ (n2/4).)

We have already argued in part (a) that since G is triangle-free it must be
the case that d(u) + d(v) ≤ n. Now consider the graph G′ obtained by G by
completely removing the vertices u and v and all edges incident to them.

The subgraph G′ is clearly also triangle-free, since G is traingle-free.

Moreover, G′ has n − 2 vertices. Thus, by the induction hypothesis, G′ has at
most (n− 2)2/4 edges. But since d(u) + d(v) ≤ n, and since {u, v} ∈ E, we see
that removing u and v can lead to the removal of at most n − 1 edges from G
(because the edge {u, v} is double-counted in d(u) + d(v)). Thus m, the number
of edges of G, satisfies:

m ≤ (n− 2)2

4
+ (n− 1) =

(n− 2)2 + 4(n− 1)

4
=

n2 − 4n + 4 + 4n− 4

4
=

n2

4
.

(Note: for the base case, we do need to consider both n = 3 and n = 4, as we
have, because the inductive step for n uses the inductive hypothesis applied to
n − 2, and consequently, to establish the claim for all n ≥ 3 our base case has
to include both n = 3 and n = 4. Otherwise, for example, if we only had n = 3
as a base case, then the inductive argument as given wouldn’t work for n = 4,
unless we also added the n = 2 case as a base case.)

(c) This is an immediate consequence of the special case of Ramsey’s theorem,
proved in class, that among any group of 6 people (vertices), every pair of which
are either friends or enemies (edges or non-edges), there are either 3 who are
mutual friends (a triangle), or 3 who are mutual enemies (a group of 3 vertices
without any edges between them.

Since we are told that there are at least 6 vertices, and that there are no triangles,
there must be (at least) 3 nodes such that there are no edges between any of
them.
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