Module Title: dmmr Exam Diet (Dec/April/Aug): April 2017 Brief notes on answers:

- 1. (a) Any correct bijection here such as f(x) = -x which is different from the identity function.
 - (i). $f: A \to \mathbb{Z}^+$ given as $f(x) = \sqrt{x}$ is a bijection. 3 marks for the details.
 - (ii). $f: A \to \mathbb{Z}^+$ given as f(x) = 2x, x > 0 and f(x) = -(2x 1) for $x \le 0$ is a bijection; 4 marks for the details.
- 2. (a) For the base case n = 1. LHS is a as is RHS. 1 mark for this. For the inductive step assume it holds for n = j. Show it for n = j + 1.

$$\sum_{k=1}^{j+1} (a + (k-1)r) = \sum_{k=1}^{j} (a + (k-1)r) + (a+jr)$$

Using the IH this is

$$\frac{j}{2}(2a + (j-1)r) + (a+jr)$$

Now the result follows as this is equal to $\frac{j+1}{2}(2a+jr)$. 6 marks here; 3 for using induction hypothesis and 3 for getting it all correct.

- (b) Using Euclid's algorithm: $= \gcd(89, 55) = \gcd(55, 34) = \gcd(34, 21) = \gcd(21, 13) = \gcd(13, 8) = \gcd(8, 5) = \gcd(5, 3) = \gcd(3, 2) = \gcd(2, 1) = \gcd(1, 0) = 1$. 3 marks for full answer.
- 3. (a) Note that since we know that for i ∈ {1,2,3}, f(7-i) = 5- f(i), we know that the values f(i) of the function, for all i ∈ {1,2,3}, determine the values of the function on the entire domain {1,2,3,4,5,6}. (Namely, f(1) determines f(6), and f(2) determines f(5), and f(3) determines f(4).)
 Moreover, for each i ∈ {1,2,3}, we are free to let f(i) be any value in {1,2,3,4}. Thus, the number of such functions is the number of distinct functions g : {1,2,3} → {1,2,3,4}. There are thus 4³ = 64 distinct such functions.
 - (b) Each function $f : \{1, \ldots, 7\} \to \{1, \ldots, 7\}$ can be described by a sequence $(f(1), f(2), \ldots, f(7))$ of numbers, each in $\{1, \ldots, 7\}$ such that the *i*'th number f(i) is not *i*. Thus, there are 7-1 = 6 possible choices for the *i*'th number, f(i), for all $i \in \{1, \ldots, 7\}$. By the product rule, there are thus 6^7 such functions.
- 4. By the binomial theorem, we know that $(n+1)^d = \sum_{i=0}^d {d \choose i} n^i 1^{d-i} = \sum_{i=0}^d {d \choose i} n^i \ge \sum_{i=0}^d n^i \ge \sum_{i=0}^d {n \choose i}.$ The last inequality holds because $n^i \ge {n \choose i}$. To see why this is true, note that: ${n \choose i} = \frac{n(n-1)\dots(n-i+1)}{i!} \le n(n-1)\dots(n-i+1) \le n^i.$

5. This is a straightforward application of Bayes' Theorem. Let A be the event that a chimp has disease A, and let G be the event that a chimp has that specific gene. We are told that P(G|A) = 3/5 and $P(G|\bar{A}) = 1/10$, and that P(A) = 1/6 and (thus) $P(\bar{A}) = 5/6$. We are interested in knowing P(A|G). By Bayes' Theorem, this is:

$$P(A|G) = \frac{P(G|A)P(A)}{P(G|A)P(A) + P(G|\bar{A})P(\bar{A})} = \frac{(3/5)(1/6)}{(3/5)(1/6) + (1/10)(5/6)}$$
$$= \frac{(1/10)}{(1/10) + (1/12)} = \frac{(12/120)}{(22/120)} = \frac{6}{11}.$$

PART B

- 6. (a) True. If $C \in \mathcal{P}(A)$ or $\mathcal{P}(B)$ then $C \subseteq A$ or $C \subseteq B$ so therefore $C \in \mathcal{P}(A \cup B)$. 3 marks for convincing explanation; only 1 mark without explanation.
 - (b) True. If $C \in \mathcal{P}(A)$ and $C \in \mathcal{P}(B)$ then $C \subseteq A$ and $C \subseteq B$ so $C \subseteq A \cap B$ and so $C \in \mathcal{P}(A \cap B)$. 3 marks for convincing explanation, 1 mark without explanation.
 - (c) False. If $A = \{0, 1\}$ and $B = \{1\}$ then $\{0, 1\} \in \mathcal{P}(A)$ but not in $\mathcal{P}(B)$; however $\mathcal{P}(A - B) = \mathcal{P}(\{0\})$. As before 3 marks for explanation; 1 mark without explanation.
 - (d) False. $\mathcal{P}(A) \times \mathcal{P}(B)$ is a set of set pairs whereas $\mathcal{P}(A \times B)$ is a set of sets of pairs: for instance if $A = \{0, 1\} = B$ then (A, B) is in the first but not in the second. 3 marks for explanation; 1 mark without explanation.
 - (e) False. If $A = \{0\}$ and $B = \{1\}$ then $\{0, 1\} \in \mathcal{P}(A \cup B)$ but not in $\mathcal{P}(A) \cup \mathcal{P}(B)$. 3 marks for explanation; 1 mark without explanation.
 - (f) True. If $C \in \mathcal{P}(A \cap B)$ then $C \subseteq A$ and $C \subseteq B$ so $C \in \mathcal{P}(A) \cap \mathcal{P}(B)$ 4 marks for explanation; 1 mark without explanation.
 - (g) True. If $C \in \mathcal{P}(A B)$ then $C \subseteq A$ and $C \cap B = \emptyset$ so $C \in \mathcal{P}(A) \cap \mathcal{P}(B)$ 3 marks for explanation; 1 mark without explanation.
 - (h) False. $\mathcal{P}(A \times B)$ is a set of sets of pairs whereas $\mathcal{P}(A) \times \mathcal{P}(B)$ is a set of set pairs: if $A = \{0\}$ and $B = \{1\}$ then $\{(0,1)\}$ is an element of the first but not the second. 3 marks for explanation; 1 mark without explanation.
- 7. (a) We did this proof in lectures. Consider $(a_1M_1y_1 + \ldots + a_nM_ny_n) \mod m_i$. By assumption m_i divides M_j if $j \neq i$. So it is equal to $a_iM_iy_i \mod m_i$ because $cm + d \mod m = d \mod m$. Now we assume y_i is inverse of $M_i \mod m_i$; so $M_iy_i \equiv 1 \pmod{m_i}$. Therefore, $x \equiv a_i \pmod{m}$. 10 marks for adding in all the details of this answer such as explaining inverses.
 - (b) Here $M_1 = 105$ and $y_1 = 1$; $M_2 = 70$ and $y_2 = 1$; $M_3 = 42$ and $y_3 = 3$; $M_4 = 30$ and $y_4 = 4$. So the answer is $105 + 140 + 504 + 720 \mod 210 = 209$. 10 marks for getting all the details right.
 - (c) Assume z is another solution; then $z \equiv x \pmod{m_1}, \ldots, z \equiv x \pmod{m_n}$. But then since $gcd(m_i, m_j) = 1$ for $i \neq j$ it follows that $z \equiv x \pmod{m}$ as required. 5 marks for full argument.
- 8. (a) We prove this by contradiction. Suppose not. Then d(u) > (n/2) for all $u \in V$. But then note that the edge set E is non-empty and for any pair $u, v \in V$ such that $\{u, v\} \in E$ we have d(u) + d(v) > n. But then since there are only n = |V| vertices, by the pigeon hole principle there must be some vertex w such that there is an edge between w and both u and v. In other words, there must be a triangle. This is a contradiction. So, there can not exist any pair of vertices $u, v \in E$ such that $\{u, v\} \in E$ and d(u) + d(v) > n, and hence it can not be the case that all vertices u have degree d(u) > n/2.
 - (b) We prove by induction on $n \ge 3$ that if G is triangle-free then $m \le \frac{n^2}{4}$. First, we establish the base cases n = 3 and n = 4. When n = 3, if G is triangle-free it has at most m = 2 edges, and $m \le 2 \le \frac{n^2}{4} = \frac{9}{4}$. Next, n = 4. In this case we can

see that if G is triangle-free, the most number of edges G could have is m = 4, given by a "rectangle graph". And again, we see that $m \le 4 \le \frac{n^2}{4} = \frac{16}{4} = 4$. Now, for the inductive step, suppose that for some $n \ge 5$ the claim holds when

Now, for the inductive step, suppose that for some $n \ge 5$ the claim holds when the number of vertices is $|V| \le n-2$. We show that it holds when the number of vertices is |V| = n.

Consider any pair of vertices $u, v \in V$, such that $\{u, v\} \in E$. (If there is no such pair, then we are done, because $m = 0 \leq (n^2/4)$.)

We have already argued in part (a) that since G is triangle-free it must be the case that $d(u) + d(v) \leq n$. Now consider the graph G' obtained by G by completely removing the vertices u and v and all edges incident to them.

The subgraph G' is clearly also triangle-free, since G is traingle-free.

Moreover, G' has n-2 vertices. Thus, by the induction hypothesis, G' has at most $(n-2)^2/4$ edges. But since $d(u) + d(v) \le n$, and since $\{u, v\} \in E$, we see that removing u and v can lead to the removal of at most n-1 edges from G (because the edge $\{u, v\}$ is double-counted in d(u) + d(v)). Thus m, the number of edges of G, satisfies:

$$m \le \frac{(n-2)^2}{4} + (n-1) = \frac{(n-2)^2 + 4(n-1)}{4} = \frac{n^2 - 4n + 4 + 4n - 4}{4} = \frac{n^2}{4}.$$

(Note: for the base case, we do need to consider both n = 3 and n = 4, as we have, because the inductive step for n uses the inductive hypothesis applied to n-2, and consequently, to establish the claim for all $n \ge 3$ our base case has to include both n = 3 and n = 4. Otherwise, for example, if we only had n = 3 as a base case, then the inductive argument as given wouldn't work for n = 4, unless we also added the n = 2 case as a base case.)

(c) This is an immediate consequence of the special case of Ramsey's theorem, proved in class, that among any group of 6 people (vertices), every pair of which are either friends or enemies (edges or non-edges), there are either 3 who are mutual friends (a triangle), or 3 who are mutual enemies (a group of 3 vertices without any edges between them.

Since we are told that there are at least 6 vertices, and that there are no triangles, there must be (at least) 3 nodes such that there are no edges between any of them.