
DMMR Tutorial sheet 7

Graphs

1. Suppose there is a finite set A of job applicants and a finite set J of job openings, and that for
some fixed positive integer k ≥ 1, every job applicant a ∈ A has applied to exactly k jobs in J ,
and every job opening j ∈ J has received exactly k job applications from applicants in A.

Prove that |A| = |J |, and that it is possible to match each job applicant a ∈ A with a unique job
f(a) ∈ J which a has applied for, such that all applicants and all jobs are “matched”, and no job
(no applicant) is matched to more than one applicant (one job, respectively). In other words, prove
that there is a bijective function f : A→ J , such that, for all a ∈ A, a has applied to f(a).

[Hint: apply the generalized pigeonhole principle to show that Hall’s Theorem applies in this
setting.]

Solution:
Consider the bipartite graph G = (A∪J,E), with bipartition (A, J). There is one vertex for each
applicant a ∈ A, and one vertex for each job opening j ∈ J . There is an edge {a, j} ∈ E if and
only if applicant a ∈ A has applied to job j ∈ J .

From the fact that every applicant has applied to exactly k ≥ 1 jobs, and that every job has
received k applications, we know that G is a k-regular bipartite graph, meaning every vertex in G
has degree exactly k.

To see that |A| = |J |, note that if we count the edges of G by summing many edges are incident
on A, we see that there are k|A| edges, while if we count the edges by counting how many are
incident on J , we see that there are k|J | edges. Since k ≥ 1, we must have |A| = |J |.
We are asked to show that there must exist a perfect matching in G. We show this by showing that
the conditions of Hall’s theorem hold. Recall that Hall’s theorem tells that (given that |A| = |J |),
there is a perfect matching in G if and only if for every subset S ⊆ A, |N(S)| ≥ |S|, where N(S)
denotes the set of neighbours of nodes in S.

For any subset S ⊆ A, since every applicant a ∈ S has exactly k jobs as neighbours, we know that
there are k|S| edges going out of S. Suppose, for contradiction, that |N(S)| < |S|. Then by the
generalized pigeonhole principle, there must be some job j ∈ N(S), such that j has strictly more
than k applicants. But this contradicts the assumption that G is k-regular, i.e., every job receives
exactly k applications.

Thus, Hall’s Theorem applies, and implies there exists a perfect matching between applicants in
A and jobs in J . �

2. How many non-isomorphic (simple, undirected) graphs are there with exactly 4 vertices? Justify
your answer.

Solution:
Let us divide in cases, according to the number of vertices of the largest connected subgraph
(LCS). Clearly, there is only one graph where the LCS has 1 vertex (all vertices have degree 0).
There are 2 graphs where LCS has 2 vertices. There are 2 graphs where LCS has 3 vertices, and
there are 6 graphs where the LCS has 4 vertices. These six graphs are represented below.

1



Thus, the total number of non-isomorphic simple undirected graphs with 4 vertices is 1+ 2+2+
6 = 11. �

3. Suppose G = (V,E) is a directed graph, and u and v are vertices of G. Show that either u and
v are in the same strongly connected component of G, or they are in disjoint strongly connected
components of G.

Solution:
Suppose the strongly connected components Cu of u and Cv of v are not disjoint, i.e., there is
a non-empty intersection. We will prove that the subgraph with vertices Cu ∪ Cv is strongly
connected. It suffices to prove that any point in Cu is strongly connected to any point in Cv. Let
u′ ∈ Cu and v′ ∈ Cv, and x ∈ Cu ∩Cv. Clearly, there are directed paths from u′ to x and from x
to v′. Thus, there is a path from u′ to v′. Similarly, there must also be a path from v′ to u′. Thus,
the subgraph with vertices Cu ∪ Cv is strongly connected. �

4. Recall that the n-dimensional hypercube, or n-cube, is the simple undirected graph whose nodes
are bit strings of length n, and such that there is an edge between a pair of nodes if and only if
their bit strings differ in exactly one bit position.

(a) For what values of n ≥ 1 does the n-cube have an Euler circuit?

(b) Prove by induction that for all n ≥ 2, the n-cube has a Hamiltonian circuit.

Solution:

(a) Any vertex in a n-cube has degree n and every n-cube is connected (to give a path, change
the bits one by one from one vertex to the other). An Euler circuit exists in a connected
graph if and only if every vertex has even degree. Thus, there is an Euler circuit if and only
if n is even.

(b) The base case (n = 2) is trivial (the 2-cube is the 4-cycle C4, which clearly has a Hamil-
tonian circuit). Let us assume that there is a Hamiltonian circuit for the n-cube and prove
that there must also be one for the (n + 1)-cube. Take the (n + 1)-cube and consider
the subgrah G0 with the vertices of the form (b1, . . . , bn, 0), and the subgraph G1 with
the vertices of the form (b1, . . . , bn, 1). Clearly, G0 and G1 are both isomorphic to the
n-cube. By the inductive hypothesis we can find a Hamiltonian circuit for each. Let
us take the ‘same’ circuit for both (we can get one of the circuits by only changing the
last coordinate of each vertex in the other circuit). Now take two vertices that are adja-
cent in the Hamiltonian cycle for G0: (x1, . . . , xn, 0), (y1, . . . , yn, 0), and the correspond-
ing vertices in G1: (x1, . . . , xn, 1), (y1, . . . , yn, 1). Then, by dropping the edge between
(x1, . . . , xn, 0) and (y1, . . . , yn, 0) in the Hamiltonian circuit, we get a Hamiltonian path
P0 = (x1, . . . , xn, 0), . . . , (y1, . . . , yn, 0) of G0, and likewise we get a Hamiltonian path
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P1 = (y1, . . . , yn, 1), . . . , (x1, . . . , xn, 1) of G1, which goes in the opposite direction. Now
consider the Hamiltonian circuit for G obtained from P0 and P1, by composing the paths
P0 and P1, using the edge between (y1, . . . , yn, 0) and (y1, . . . , yn, 1), and the edge be-
tween (x1, . . . , xn, 1) and (x1, . . . , xn, 0). Specifically, consider the Hamiltonian circuit
C = P0, P1, (x1, . . . , xn, 0). This is clearly a Hamiltonian circuit of the (n+1)-cube, since
it is a circuit that traverses each vertex of the (n + 1)-cube exactly once (and returns at the
end to where it started).
(It is worth pointing out that a Hamiltonian circuit on a hypercube is also known as a Gray
code, and has applications in coding theory and other areas.) �

5. Consider a directed graph G = (V,E), and let s, t ∈ V be two distinct and non-adjacent ver-
tices of G. A directed s-t-path in G is a sequence of vertices s = v0, v1, . . . , vk = t, such that
(vi−1, vi) ∈ E, for all i ∈ {1, . . . , k}. Two distinct directed s-t-paths are called “internally vertex-
disjoint” if they share no vertex in common other than s and t themselves, i.e., the intersection of
the sets of vertices on the two paths is just {s, t}.
A subset A ⊆ V of the vertices is called a directed s-t-cut in G if s, t 6∈ A and A intersects the set
of vertices appearing on any directed s-t-path in G.

Let ds,t be the maximum number of mutually vertex-disjoint directed s-t-paths in G. Let cs,t be
the minimum size of any directed s-t-cut in G. Prove that ds,t ≤ cs,t, for any directed graph
G = (V,E) and any s, t ∈ V .

(Food for thought: can you think of any directed graph G where ds,t 6= cs,t? You are not expected
to answer this, just think about it.)

Solution:
Let D = {P1, . . . , Pd} be any set of internally vertex-disjoint directed s-t-paths in a directed
graph G. Let A be any directed s-t-cut in G. By definition, A must contain some vertex on every
directed s-t-path Pi ∈ D, and since A contains neither s nor t, A must contain some internal vertex
of every Pi ∈ D. Moreover, since any two distinct s-t-paths Pi, Pk ∈ D, i 6= j, are internally
vertex disjoint, A must contain a internal vertex vi from every Pi ∈ D, such that vi 6= vj for all
i, j ∈ {1, . . . , d}, i 6= j. Thus, |A| ≥ d = |D|. Since this hold true for any directed s-t-cut A and
any set D of internally vertex-disjoint directed s-t-paths, this implies that the smallest such set A
is at least as large as the largest such set D, i.e., that cs,t ≥ ds,t.

Answer to the food for tought question: it turns out that for ALL graphs, G, and for all distict
vertices s, t, we must have ds,t = cs,t. In other words, the minimum size of a directed s-t-cut
is always equal to the maximum number of mutually vertex disjoint directed s-t-paths. This is a
version of a theorem in graph theory called Menger’s Theorem. (It is also related to a theorem
about “network flows” called the “max-flow min-cut” theorem.) We will not prove it. It can be
proved by induction on the number of edges of G, but the proof is a bit tricky. �
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