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Number theory

October 17th, 2019

1. Analogous to the definition of gcd we define the least common multiple (lcm) in the following
way: for two positive integers a and b with the prime factorisation a = pa11 ·...·pann , b = pb11 ·...·pbnn
let

lcm(a, b) := p
max(a1,b1)
1 · ... · pmax(an,bn)

n

Show that if a and b are positive integers, then ab = gcd(a, b) · lcm(a, b).

Solution:
Take a set of primes {p1, p2, . . . , pn} and natural numbers {a1, a2, . . . , an, b1, b2, . . . , bn} such
that a = pa11 pa22 · · · pann and b = pb11 pb22 · · · pbnn . Then,

gcd(a, b) = p
min(a1,b1)
1 p

min(a2,b2)
2 · · · pmin(an,bn)

n

lcm(a, b) = p
max(a1,b1)
1 p

max(a2,b2)
2 · · · pmax(an,bn)

n

Thus,

gcd(a, b) · lcm(a, b) = p
min(a1,b1)
1 p

max(a1,b1)
1 p

min(a2,b2)
2 p

max(a2,b2)
2 · · · pmin(an,bn)

n pmax(an,bn)
n

= p
min(a1,b1)+max(a1,b1)
1 p

min(a2,b2)+max(a2,b2)
2 · · · pmin(an,bn)+max(an,bn)

n

Moreover, for every x, y it is true that min(x, y) + max(x, y) = x+ y. Therefore,

gcd(a, b) · lcm(a, b) = pa1+b1
1 pa2+b2

2 · · · pan+bn
n

= pa11 pb11 pa22 pb22 · · · p
an
n pbnn

= ab

�

2. Use the Euclidean algorithm to find

(a) gcd(18, 12)

(b) gcd(201, 111)

(c) gcd(1331, 1001)

(d) gcd(54321, 12345)

(e) gcd(5040, 1000)

(f) gcd(9888, 6060)

Solution:

(a) gcd(18, 12) = gcd(12, 6) = gcd(6, 0) = 6
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(b) gcd(201, 111) = gcd(111, 90) = gcd(90, 21) = gcd(21, 6) = gcd(6, 3) = gcd(3, 0) = 3

(c) gcd(1331, 1001) = gcd(1001, 330) = gcd(330, 11) = gcd(11, 0) = 11

(d) gcd(54321, 12345) = gcd(12345, 4941) = gcd(4941, 2463) = gcd(2463, 15) = gcd(15, 3) =
gcd(3, 0) = 3

(e) gcd(5040, 1000) = gcd(1000, 40) = gcd(40, 0) = 40

(f) gcd(9888, 6060) = gcd(6060, 3828) = gcd(3828, 2232) = gcd(2232, 1596) = gcd(1596, 636) =
gcd(636, 324) = gcd(324, 312) = gcd(312, 12) = gcd(12, 0) = 12

�

3. Recall in lectures we introduced the extended Euclidean algorithm below to compute for positive
x, y not only d = gcd(x, y) but also the Bézout coefficients (the integers a and b such that
d = ax+ by). The relation x div y is the quotient, the q such that x = yq+ r where 0 ≤ r < y is
the remainder x mod y (from the division algorithm).

algorithm e-gcd(x,y)
if y = 0
then return(x, 1, 0)
else
(d,a,b) := e-gcd(y,x mod y)
return((d,b,a - ((x div y) * b)))

Compute the triples (d, a, b) for the following x and y.

(a) x = 18, y = 12

(b) x = 201, y = 111

(c) x = 1331, y = 1001

Solution:
That the algorithm is correct for computing Bézout coefficients follows from observations (dis-
cussed in lectures) which includes the following: assume x = yq + r via division algorithm
where r = x mod y and q = x div y and assume d = ay + br; so, r = x − yq and, therefore,
d = ay + b(x− yq) = bx+ (a− qb)y, as required.

(a) We do the calls to e-gcd in reverse, so the returns are in order.

e-gcd(6, 0) = (6, 1, 0). So 6 = 1 ∗ 6 + 0 ∗ 0
e-gcd(12, 6) = (6, 0, 1− (2 ∗ 0)) = (6, 0, 1). So 6 = 0 ∗ 12 + 1 ∗ 6
e-gcd(18, 12) = (6, 1, 0− (1 ∗ 1)) = (6, 1,−1). So 6 = 1 ∗ 18 +−1 ∗ 12

6 = 1 ∗ 18 +−1 ∗ 12
(b)

e-gcd(3, 0) = (3, 1, 0). So 3 = 1 ∗ 3 + 0 ∗ 0
e-gcd(6, 3) = (3, 0, 1− (2 ∗ 0)) = (3, 0, 1). So 3 = 0 ∗ 6 + 1 ∗ 3
e-gcd(21, 6) = (3, 1, 0− (3 ∗ 1)) = (3, 1,−3). So 3 = 1 ∗ 21 +−3 ∗ 6
e-gcd(90, 21) = (3,−3, 1− (4 ∗ −3)) = (3,−3, 13). So 3 = −3 ∗ 90 + 13 ∗ 21
e-gcd(111, 90) = (3, 13,−3− (1 ∗ 13)) = (3, 13,−16). So 3 = 13 ∗ 111 +−16 ∗ 90
e-gcd(201, 111) = (3,−16, 13− (1 ∗ −16)) = (3,−16, 29). So 3 = −16 ∗ 201 + 29 ∗ 111

3 = −16 ∗ 201 + 29 ∗ 111 = −3216 + 3219
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(c)

e-gcd(11, 0) = (11, 1, 0). So 11 = 1 ∗ 11 + 0 ∗ 0
e-gcd(330, 11) = (11, 0, 1− (30 ∗ 0)) = (11, 0, 1). So 11 = 0 ∗ 330 + 1 ∗ 11
e-gcd(1001, 330) = (11, 1, 0− (3 ∗ 1)) = (11, 1,−3). So 11 = 1 ∗ 1001 +−3 ∗ 330
e-gcd(1331, 1001) = (11,−3, 1− (1 ∗ −3)) = (11,−3, 4). So 11 = −3 ∗ 1331 + 4 ∗ 1001

11 = −3 ∗ 1331 + 4 ∗ 1001 = −3993 + 4004

�

4. This question uses Fermat’s little theorem.

(a) Use Fermat’s little theorem to compute 3304 mod 11 and 3304 mod 13

(b) Show with the help of Fermat’s little theorem that if n is a positive integer, then 42 divides
n7 − n.

Solution:

(a) Fermat’s little theorem tells us that 310 ≡ 1 (mod 11). Then, 3300 ≡ (310)30 ≡ 130 ≡
1 (mod 11). Thus, 3304 = 34 · 3300 ≡ 34 · 1 ≡ 4 (mod 11). Therefore, 3304 mod 11 = 4.
Similarly, 312 ≡ 1 (mod 13). Then, 3300 ≡ (312)25 ≡ 125 ≡ 1 (mod 13). Thus, 3304 =
34 · 3300 ≡ 34 · 1 ≡ 3 (mod 13). Therefore, 3304 mod 13 = 3.

(b) To show 42 divides n7 − n, we show 2 × 3 × 7 divides n7 − n. So, we prove n7 − n is
divisible by 2, 3 and 7 respectively.
Case 1, we prove 2 divides n7 − n. There are two cases. If n is even, 2 divides n7 − n. If n
is odd, we have n7−n = n(n6− 1) and n6− 1 is even since n6 is odd. Therefore, 2 divides
n(n6 − 1).
Case 2 we prove 3 divides n7−n. If 3 divides n7−n, it is done. If not then 3 doesn’t divide
n as it is a factor of n7−n. So by Fermat’s little theorem, we know n3−1 ≡ 1 (mod 3) since
3 and n are coprime. Then (n2)3 ≡ (1)3 = 1 (mod 3). So therefore 3 divides n6 − 1 and so
3 divides n7 − n.
Case 3 prove 7 divides n7 − n. If 7 divides n7 − n, it is done. If not then 7 doesn’t divide n
as it is a factor of n7 − n. Therefore, by Fermat’s little theorem, we know n7−1 ≡ 1 (mod
7) since 7 and n are coprime. Then 7 divides n6 − 1 and so 7 divides n7 − n.

�

5. (a) Let a, b, c, d,m be integers. Find counter examples to each of the following statements about
congruences:

i. if ac ≡ bc (mod m) with m ≥ 2, then a ≡ b (mod m)

ii. if a ≡ b (mod m) and c ≡ d (mod m) with c and d positive and m ≥ 2, then ac ≡
bd (mod m)

Solution:

i. With m = c = 2 and a = 0, b = 1 we get ac ≡ 0 · 2 ≡ 0 ≡ 2 ≡ 1 · 2 ≡ bc (mod 2), but
0 mod 2 = 0 6= 1 = 1 mod 2 and therefore 0 6≡ 1 (mod 2)

ii. With m = 3, a = 2 ≡ 5 = b (mod 3) and c = 4 ≡ 1 = d (mod 3) we get ac mod 3 =
24 mod 3 = 16 mod 3 = 1, but bd mod 3 = 51 mod 3 = 5 mod 3 = 2. Since 1 6= 2 it
follows that ac 6≡ bd (mod m)
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(b) Using the Chinese Remainder Theorem, find a solution to the following system of equiva-
lences.

x ≡ 1 (mod 2)
x ≡ 2 (mod 3)
x ≡ 3 (mod 5)
x ≡ 4 (mod 11)

Explain your calculations.
Solution:
By the Chinese Remainder Theorem we know the solution is

(a1M1y1 + a2M2y2 + a3M3y3 + a4M4y4) mod m

where m = (2 × 3 × 5 × 11) = 330; a1 = 1, M1 = m/2 = 165 and y1 = 1 is the
inverse of M1 mod 2 (that is, the unique y1 mod 2 such that y1×M1 ≡ 1 (mod 2)); a2 = 2,
M2 = m/3 = 110 and y2 = 2 is the inverse of M2 mod 3; a3 = 3, M3 = m/5 = 66 and
y3 = 1; a4 = 4, M4 = m/11 = 30 and y4 = 7.
So the solution is 165 + 440 + 198 + 840 (mod 330) ≡ 323 (mod 330). �
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