DMMR Tutorial sheet 2

Sets, Functions, Relations (part 1)

September 26th, 2019

1. (a) Prove the set absorption law $A \cup (A \cap B) = A$.

Solution:

- We show that $A \cup (A \cap B) \subseteq A$ and $A \cup (A \cap B) \supseteq A$.
 - For the first consider an element x in A ∪ (A ∩ B). From the definition of ∪ we know that either x ∈ A or x ∈ (A ∩ B). In the first case we are done. In the other case we know that x is both in A and in B from the definition of ∩. Therefore we get x ∈ A in all cases.
 - Consider an element $x \in A$. From the definition of \cup we immediately get $x \in A \cup (A \cap B)$.

(b) Prove the set distribution law $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ Solution:

Similarly we show $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$ and $A \cup (B \cap C) \supseteq (A \cup B) \cap (A \cup C)$.

- For the first, consider an element $x \in A \cup (B \cap C)$. So, $x \in A$ or $x \in (B \cap C)$. If $x \in A$ then $x \in A \cup B$ and $x \in A \cup C$; so, $x \in (A \cup B) \cap (A \cup C)$. If $x \in B \cap C$ then $x \in B$ and $x \in C$; so, $x \in A \cup B$ and $x \in A \cup C$ and, therefore, $x \in (A \cup B) \cap (A \cup C)$.
- If $x \in (A \cup B) \cap (A \cup C)$ then $x \in A \cup B$ and $x \in A \cup C$; so, $x \in A$ or $x \in B$ and $x \in A$ or $x \in C$; so $x \in A$ or $(x \in B \text{ and } x \in C)$; so, $x \in A \cup (B \cap C)$.

(c) Prove the following set identity $(B - A) \cup (C - A) = (B \cup C) - A$ Solution:

Again we show $(B-A) \cup (C-A) \subseteq (B \cup C) - A$ and $(B-A) \cup (C-A) \supseteq (B \cup C) - A$.

- For the first, consider an element x ∈ (B − A) ∪ (C − A). So, x ∈ B − A or x ∈ C − A; so, (x ∈ B and x ∉ A) or (x ∈ C and x ∉ A); consequently, x ∈ B or x ∈ C and x ∉ A; so, x ∈ (B ∪ C) − A.
- If $x \in (B \cup C) A$ then $x \in B \cup C$ and $x \notin A$; so, $x \in B$ or $x \in C$ and $x \notin A$; therefore, $x \in B A$ or $x \in C A$; so, $x \in (B A) \cup (C A)$.
- 2. Let A, B, C be sets. Derive a formula for $|A \cup B \cup C|$, which only uses the cardinality $|\cdot|$, intersection \cap and arithmetic operators.

Solution:

$$\begin{split} |A \cup B \cup C| &= |A \cup (B \cup C)| \\ &= |A| + |B \cup C| - |A \cap (B \cup C)| \\ &= |A| + (|B| + |C| - |B \cap C|) - |(A \cap (B \cup C))| \\ &= |A| + |B| + |C| - |B \cap C| - |(A \cap B) \cup (A \cap B)| \\ &= |A| + |B| + |C| - |B \cap C| - (|A \cap B| + |A \cap C| - |(A \cap B) \cap (A \cap C)|) \\ &= |A| + |B| + |C| - |B \cap C| - (|A \cap B| + |A \cap C| - |(B \cap A) \cap (A \cap C)|) \\ &= |A| + |B| + |C| - |B \cap C| - (|A \cap B| + |A \cap C| - |B \cap (A \cap (A \cap C))|) \\ &= |A| + |B| + |C| - |B \cap C| - (|A \cap B| + |A \cap C| - |B \cap ((A \cap A) \cap C))| \\ &= |A| + |B| + |C| - |B \cap C| - (|A \cap B| + |A \cap C| - |B \cap ((A \cap A) \cap C))| \\ &= |A| + |B| + |C| - |B \cap C| - |A \cap B| - |A \cap C| + |B \cap A \cap C| \end{split}$$

3. (a) Determine whether the function $f : (\mathbb{Z} \times \mathbb{Z}) \to \mathbb{Z}$ is surjective if

i.	$f(m,n) = m^2 + n^2$	iii. $f(m,n) = n $
ii.	f(m,n) = m	iv. $f(m, n) = m - n$

Solution:

- i. The function is not surjective because not every integer is the sum of two perfect squares. For example -|n| and 3 are not the sum of two perfect squares (for any n).
- ii. The function is surjective because for any $z \in \mathbb{Z}$ we can choose a pair $(z, x) \in \mathbb{Z} \times \mathbb{Z}$ and f(z, x) = z.
- iii. The function is not surjective because |n| is always positive, so there exists no (x, y) such that f(x, y) = -|n|.
- iv. The function is surjective because for every z integer f(z, 0) = z 0 = z.

- (b) Assume functions $g: A \to B$ and $f: B \to C$. Prove or disprove the following statements.
 - i. If $f \circ g$ and g are injective then f is injective. Solution:

This statement is not correct; let $A = \{a, b\} = C$ and $B = \{a, b, c\}$; let g(a) = aand g(b) = b; and f(a) = a; f(b) = b and f(c) = a. Now $f \circ g$ is injective since $(f \circ g)(a) \neq (f \circ g)(b)$; similarly g is injective; however, f is not injective because f(a) = f(c).

ii. If $f \circ g$ and f are injective then g is injective. Solution:

This statement is true. In fact, we prove the slightly stronger: if $f \circ g$ is injective then g is injective. By way of contradiction assume $f \circ g$ is injective and g is not. So, for some $a, a' \in A, a \neq a'$ and g(a) = g(a'); so, f(g(a)) = f(g(a')), so $(f \circ g)(a) = (f \circ g)(a')$ which contradicts that $f \circ g$ is injective.

4. Given function $f : A \to B$, we define the function $P_f : \mathcal{P}(A) \to \mathcal{P}(B)$ as follows: $P_f(A') = \{b \in B \mid \exists a \in A'(f(a) = b)\}$ for $A' \subseteq A$. Prove the following statements.

(a) $f: A \to B$ is injective iff $P_f: \mathcal{P}(A) \to \mathcal{P}(B)$ is injective.

Solution:

First assume $f : A \to B$ is injective; so for any $a, a' \in A$ if $a \neq a'$ then $f(a) \neq f(a')$. Consider $A' \subseteq A$ and $A'' \subseteq A$ and assume $A' \neq A''$: we need to show that $P_f(A') \neq P_f(A'')$. Without loss of generality assume $a \in A'$ and $a \notin A''$. By definition $f(a) \in P_f(A')$ but $f(a) \notin P_f(A'')$ as otherwise f(a) = f(a') for some $a' \in A''$ with $a \neq a'$. For the other direction assume $P_f : \mathcal{P}(A) \to \mathcal{P}(B)$ is injective; so for any $A', A'' \subseteq A$ if $A' \neq A''$ then $P_f(A') \neq P_f(A'')$. To show $f : A \to B$ is injective, consider $a, a' \in A$

where $a \neq a'$; we know $P_f(\{a\}) \neq P_f(\{a'\})$; so $f(a) \neq f(a')$. (b) $f: A \to B$ is surjective iff $P_f: \mathcal{P}(A) \to \mathcal{P}(B)$ is surjective.

Solution:

First assume $f : A \to B$ is surjective; so for every element $b \in B$ there is an $a \in A$ with b = f(a). Consider $P_f : \mathcal{P}(A) \to \mathcal{P}(B)$; it is surjective if for every $B' \subseteq B$ there is $A' \subseteq A$ such that $P_f(A') = B'$. Let $B' \subseteq B$ and let $A' = \{a \in A \mid \exists b \in B'(f(a) = b)\}$; since f is surjective, for every element $b \in B'$ there is an $a \in A'$ such that f(a) = b, so $P_f(A') = B'$. For the other direction assume $P_f : \mathcal{P}(A) \to \mathcal{P}(B)$ is surjective; so for every $B' \subseteq B$ there is an A' such that $P_f(A') = B'$. Consider the full set B; there is an $A' \subseteq A$ such that $P_f(A') = B$; so for every $b \in B$ there is an $a \in A' \subseteq A$ such that f(a) = b; so f is surjective.

5. For each of the following relations on the set of all real numbers, determine whether it is reflexive, symmetric, antisymmetric, and/or transitive, where (x, y) are related if and only if

(a) $x - y$ is a rational number.	(d) $xy = 0.$
(b) $x = 2y$.	(e) $x = 1$.
(c) $xy \ge 0$.	(f) $x = 1$ or $y = 1$.

Solution:

- (a) **Reflexive:** Yes, because $x x = 0 \in \mathbb{Q}$ Symmetric: Yes, because if x y is rational then -(x y) = y x is also rational. Antisymmetric: No, because 2 1 is rational and 1 2 is rational, but $1 \neq 2$. Transitive: Yes, because if x y and y z are both rational, then x z = (x y) + (y z) is also rational.
- (b) **Reflexive:** No, because $1 \neq 2 \cdot 1$. Symmetric: No. Let x = 2 and y = 1. Then, $x = 2 \cdot y$, but $y \neq 2 \cdot x$. Antisymmetric: Yes, because if x = 2y and y = 2x then x = 4x, which means that x = 0 = y. Transitive: No. Let x = 4, y = 2 and z = 1. Then, $x = 2 \cdot y$ and $y = 2 \cdot z$ but $x \neq 2 \cdot z$.
- (c) **Reflexive**: Yes, because $x^2 \ge 0$. **Symmetric**: Yes, because if $xy \ge 0$ then $yx = xy \ge 0$. Antisymmetric: No, because $1 \cdot 2 = 2 \cdot 1 \ge 0$, but $2 \ne 1$. Transitive: No. Let x = -1, y = 0 and z = 1. Then, $xy = (-1) \cdot 0 \ge 0$ and $yz = 0 \cdot 1 \ge 0$ but $xz = (-1) \cdot 1 = -1 < 0$.
- (d) **Reflexive:** No, because $1 \cdot 1 \neq 0$. Symmetric: Yes, because if xy = 0 then yx = xy = 0. Antisymmetric: No. Let x = 1 and y = 0. Then xy = 0 = yx, but $0 \neq 1$. Transitive: No. Let x = z = 1 and y = 0. Then, xy = 0 = yz but $xz = 1 \neq 0$.
- (e) **Reflexive:** No. Let x = 2. Then, (x, x) is not in the relation. Symmetric: No. (1, 2) is in the relation, but (2, 1) is not. Antisymmetric: Yes, because if (x, y) and (y, x) both are in the relation then x = 1 = y. Transitive: Yes, because if (x, y) and (y, z) are both in the relation, then x = 1, which means that (x, z) = (1, z), which is in the relation.

(f) **Reflexive:** No, because (2, 2) is not in the relation. Symmetric: Yes, because if $x = 1 \lor y = 1$ then $y = 1 \lor x = 1$. Antisymmetric: No, because (1, 2) and (2, 1) are in the relation, but $2 \ne 1$. Transitive: No. Let x = z = 2 and y = 1. Then, (x, y) = (2, 1) and (1, 2) are in the relation, but (x, z) = (2, 2) is not.