DMMR Tutorial sheet 3

Relations (part 2), Recurrences, Cardinality

October 3rd, 2019

1. Many program analysis methods rely on call graphs. A call graph is a binary relation R on function (or method) names in a program. A pair $(f, g) \in R$ when the body of function (method) f in the program calls the function (method) g. For example, consider the following abstracted code for a function (method) f where we have taken out all the parameters.

```
function f() {
  g();
  h()
}
```

This means that in the body of f both g and h are called. So, the pairs $(f,g) \in R$ and $(f,h) \in R$. In turn the functions (methods) g, h may call other functions (methods).

The transitive closure of relation R, written R^+ , is the following binary relation: $(f,g) \in R^+$ iff $(f,g) \in R$ or there is $n \ge 1$ such that $(f,f_1) \in R, (f_1,f_2) \in R, \ldots, (f_n,g) \in R$. That is, there is a path from f to g of consecutive pairs from R.

The symmetric closure of relation R, written R^s , is the following binary relation: $(f,g) \in R^s$ iff $(f,g) \in R$ or $(g,f) \in R$.

- (a) Prove that R^+ is transitive.
- (b) Explain what information the relations $(R^s)^+$ and $(R^+)^s$ contain about the function (method) calls in the program.
- (c) Decide which of the two relations $(R^s)^+$ and $(R^+)^s$ subsumes the other, give a formal proof of your claim and show an example relation R and a pair of functions which is contained in only one of them.
- 2. A vending machine dispensing books of stamps accepts only £1 coins, £1 notes and £5 notes.
 - (a) Find a recurrence relation for the number of ways to deposit $\pounds n$ in the vending machine, where the order in which the coins and notes are deposited matters.
 - (b) What are the initial conditions?
 - (c) How many ways are there to deposit $\pounds 10$ for a book of stamps?
- For this question you are not allowed to invoke any set that is known to be uncountable (such as subsets of ℝ) in your answer. Let A = {a, b, c}. Consider the set F = {f | f : Z⁺ → A}: that is, F is the set of all functions from Z⁺ to A. Using diagonalization, prove that F is uncountable.
- 4. Determine (and prove) whether each of these sets is countably infinite or uncountable. For those that are countably infinite, exhibit a one-to-one correspondence (i.e., bijection) between the set of positive integers and that set.

- (a) the odd negative integers
- (b) the real numbers in the open interval (0,2)
- (c) the irrational numbers in the open interval (0, 2)
- (d) the set $A \times \mathbb{Z}^+$ where $A = \{2, 3\}$
- 5. Prove that for all sets A if $A \subseteq \mathbb{Z}^+$ then either A is finite or $|A| = |\mathbb{Z}^+|$.