DMMR Tutorial sheet 2

Sets, Functions, Relations (part 1)

September 26th, 2019

- 1. (a) Prove the set absorption law $A \cup (A \cap B) = A$.
 - (b) Prove the set distribution law $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 - (c) Prove the following set identity $(B A) \cup (C A) = (B \cup C) A$
- 2. Let A, B, C be sets. Derive a formula for $|A \cup B \cup C|$, which only uses the cardinality $|\cdot|$, intersection \cap and arithmetic operators.
- 3. (a) Determine whether the function $f : (\mathbb{Z} \times \mathbb{Z}) \to \mathbb{Z}$ is surjective if

i. $f(m,n) = m^2 + n^2$	iii. $f(m, n) = n $
ii. $f(m, n) = m$	iv. $f(m, n) = m - n$

- (b) Assume functions $g: A \to B$ and $f: B \to C$. Prove or disprove the following statements.
 - i. If $f \circ g$ and g are injective then f is injective.
 - ii. If $f \circ g$ and f are injective then g is injective.
- 4. Given function $f : A \to B$, we define the function $P_f : \mathcal{P}(A) \to \mathcal{P}(B)$ as follows: $P_f(A') = \{b \in B \mid \exists a \in A'(f(a) = b)\}$ for $A' \subseteq A$. Prove the following statements.
 - (a) $f: A \to B$ is injective iff $P_f: \mathcal{P}(A) \to \mathcal{P}(B)$ is injective.
 - (b) $f: A \to B$ is surjective iff $P_f: \mathcal{P}(A) \to \mathcal{P}(B)$ is surjective.
- 5. For each of the following relations on the set of all real numbers, determine whether it is reflexive, symmetric, antisymmetric, and/or transitive, where (x, y) are related if and only if
 - (a) x y is a rational number. (d) xy = 0.
 - (b) x = 2y. (e) x = 1.
 - (c) $xy \ge 0$. (f) x = 1 or y = 1.