Context-Aware Query Suggestion by Mining Click-Through and Session Data

Presenters Tianzi Hou & Chen Wang

Presentation @ Data Mining and Exploration Course
School of Informatics, University of Edinburgh
INTRODUCTION

About this paper

• Authors: Huanhuan Cao, Daxin Jiang, Jian Pei, Qi He, Zhen Liao, Enhong Chen and Hang Li
• Publication: ACM KDD2008
• Citation: 20 (according to Google Scholar)

Query suggestion

• A way to improve usability (Google, Ask.com, etc)
• Short query, ambiguous words, different result
• Similar queries in log, pairs in same query sessions
• Context-aware?

Google’s query suggestion

<table>
<thead>
<tr>
<th>Search Term</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>edinburgh airport</td>
<td>1,400,000</td>
</tr>
<tr>
<td>edinburgh playhouse</td>
<td>142,000</td>
</tr>
<tr>
<td>edinburgh university</td>
<td>3,250,000</td>
</tr>
<tr>
<td>edinburgh evening news</td>
<td>1,310,000</td>
</tr>
<tr>
<td>edinburgh council</td>
<td>1,700,000</td>
</tr>
<tr>
<td>edinburgh zoo</td>
<td>389,000</td>
</tr>
<tr>
<td>edinburgh castle</td>
<td>1,640,000</td>
</tr>
<tr>
<td>edinburgh gumtree</td>
<td>6,090,000</td>
</tr>
<tr>
<td>edinburgh hotels</td>
<td>12,300,000</td>
</tr>
<tr>
<td>edinburgh weather</td>
<td>5,090,000</td>
</tr>
</tbody>
</table>

Ask.com’s query suggestion

<table>
<thead>
<tr>
<th>Search Term</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>edinburgh street plan</td>
<td>200,000</td>
</tr>
<tr>
<td>edinburgh zoo</td>
<td>500,000</td>
</tr>
<tr>
<td>edinburgh playhouse</td>
<td>1,000,000</td>
</tr>
<tr>
<td>edinburgh street map</td>
<td>2,000,000</td>
</tr>
<tr>
<td>edinburgh map</td>
<td>3,000,000</td>
</tr>
<tr>
<td>edinburgh castle</td>
<td>4,000,000</td>
</tr>
<tr>
<td>edinburgh university</td>
<td>5,000,000</td>
</tr>
</tbody>
</table>

19 February 2010

Tianzi Hou & Chen Wang @ DME
CHALLENGES (1)
Related Work

Traditional approaches

• Session-based approaches
• Cluster-based approaches

Problems

• High computational cost
• Cannot scale up to large data
• “Curse of dimensionality”
• Cannot support the dynamic update
CHALLENGES (2)
Critical Issues

Questions

• How should we model and capture contexts well?
• How to find the queries that many users often ask in a particular context?

Critical issues

• Cluster the queries
• Reduce the computational cost
• Increase the coverage and accuracy
The framework of the context-aware approach
Query Representing

- Click-Through bipartite
- A query is represented as a vector of URLs
- In a vector $q[i]$,
 \[q[i][j] = \text{normalized}(w[i][j]) \]
- where $w[i][j]$ is the number of times when URL j is a click of query i

Distance between Queries

- Euclidean distance
 \[\text{distance}(q[i], q[j]) = \sqrt{\sum (q[i][k]-q[j][k])^2} \]
Clustering Method

- For a query q in the query list
 - Find the closest cluster C to q obtained so far
 - If the distance between q and any query in C is less than D_{max}, assign q into C
 - Else create a cluster only contain q

Find the closest cluster fast

- Click-through bipartite is sparse
 - a query has an average number of 8.2 clicked URLs
 - an URL is a click of only 1.8 queries
 - For a query q, the number of queries which share at least one URL with q is only $8.2 \times (1.8-1) = 6.56$
A list of query events by one individual user

Two consecutive events are segmented into two sessions if the time interval between them exceeds 30 minutes

Queries in a same session are often related
Concept Sequence

- Map each query sequence $qs=q[1]...q[l]$ into a sequence of concepts $cs=c[1]...c[l]$
- For a frequent concept sequence cs, if a user is searching $cs'=c[1]...c[l-1]$, the queries in $c[l]$ can be our suggestions

Frequent Concept Sequence

- Number of concept sequence is far less than the number of possible combinations of concepts
- We only concern about the subsequence of the concept sequence
- The average number of concepts in a session is usually small
APPROACHES(6)
Conducting Query Suggestion

Concept Sequence Suffix Tree
Building the Tree

• For a frequent concept sequence $cs = c[1]...c[l]$
 • Find the node n corresponding to $cs' = c[1]...c[l-1]$
 • If cn does not exist, create a new node for cs' recursively
 • Update the node with candidate suggestions in $c[l]$

Online Query suggestion

• Mapping the query sequence into concept sequence cs
 • Find the node matches cs most
 • Return the candidate suggestions of the node
EXPERIMENTS(1)

Brief Introduction

<table>
<thead>
<tr>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 1.8 billion search queries</td>
</tr>
<tr>
<td>• 2.6 billion clicks</td>
</tr>
<tr>
<td>• 840 million query sessions (151 million unique queries, 114 million unique URLs)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>• English</td>
</tr>
<tr>
<td>• US market</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Clustering the Click-Through Bipartite</td>
</tr>
<tr>
<td>• Building the Concept Sequence Suffix Tree</td>
</tr>
<tr>
<td>• Evaluation of Query Suggestions</td>
</tr>
<tr>
<td>• Robustness and Scalability of Algorithms</td>
</tr>
</tbody>
</table>
Experimental Results

Cluster click-through bipartite
- The click-through bipartite is sparse
- 200 thousand clusters cover 700 thousand queries
- Remaining queries form singleton clusters

Build concept sequence suffix tree
- The session length is between 1 and 10
- Prune the nodes containing more than 4 concepts
EXPERIMENTS(3)
Evaluation of Query Suggestions

Methods
- Adjacency
- N-Gram
- CACB

Tests
- Test-0
- Test-1

The coverage on (a) Test-0 and (b) Test-1

The quality on (a) Test-0 and (b) Test-1
Robustness

- Compare with $\frac{|s_1 \cap s_2|}{|s_1 \cup s_2|}$
- Do not change more

Scalability

- Almost linear to the input size
- 200s for clustering queries (100% data)
- < 1s for building tree (100% data)
CONCLUSION

• Challenges
 – Large amount of data
 – High dimension of data
 – Dynamic update

• Approach
 – Clustering
 – Concept sequence suffix tree

• Result
 – Outperform two baselines in both coverage and quality
OUR THOUGHTS

- Limitations of the context-aware query suggestion
THANK YOU!