Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model

Yehuda Koren AT & T Labs – Research 2008

Present by

Hong Ge Sheng Qin

Info about paper & data-set

Factorization Meets the Neighborhood:

a Multifaceted Collaborative Filtering Model

ACM Transactions on Knowledge Discovery from Data (TDD) archive

Year of Publication: 2007; cited by 43 times

Winner of the \$1 Million Netflix Prize (2007)!!!!!
•9.34% improvement over the original Cinematch accuracy level

Netflix data:

- •Over 480,000 users, 17,770 movies
- •Over 1 million observed ratings, 1% in total
- •Rating: integer from 1 to 5 (with rating time-stamp)
- •Multivariate, Time-Series

Title interpretation

Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model

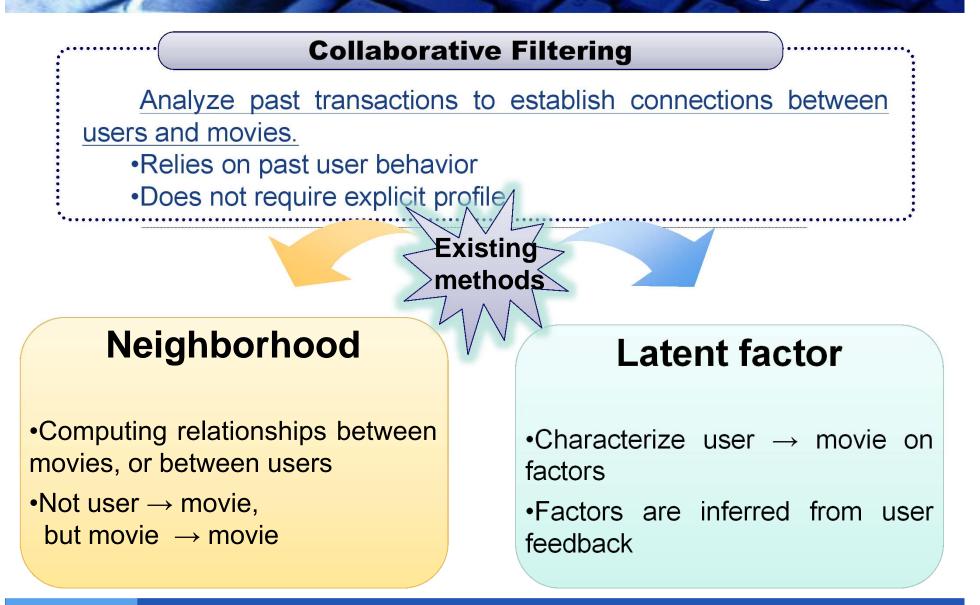
Technique about recommender systems

Based on: Collaborative Filtering (CF)A process often applied to recommender systems

Using: Neighborhood Model & Latent Factor Model •Two main disciplines of CF

Solution: Some amazing improvement & integration •Innovative point of this paper

Background



Why integrate?

Neighborhood Models

- Estimate unknown ratings by using known ratings made by user for similar movies
- Good at capturing localized information
- Intuitive and simple to implement

Latent Factor Models

- Estimate unknown ratings by uncover latent features that explain known ratings
- Efficient at capturing global information

The integrated model-why?

Reasons:

- Neighborhood Model: Good at capture localized information
- Latent Factor Model: Efficient at capturing global information
- Neither is able to capture all information
- Complementary with each other.
- Not account implicit feedback
- It's not tried before, why not?

The integrated model-how?

How?

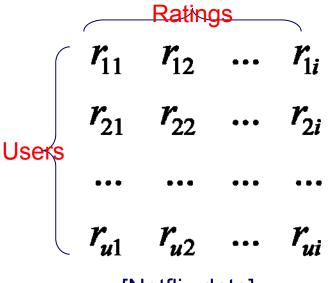
- Sum the predications of revised Neighborhood Model(NewNgbr) and revised Latent Model (SVD++)
- Some details
 - I guess you may want take a nap now.
 - Just joking!

Some background before we go further

- Many items in this matrix are missing
- Need find a good estimate for (most of efforts are dealing with this!)

Baseline estimates

- µ is the average rating over all movies
- *b_u*, *b_j* indicate the observed deviations of user *u* and item *I*, respectively, from the average

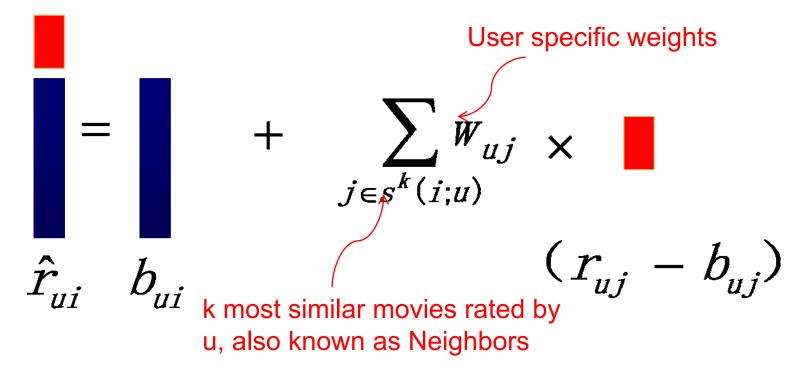


[Netflix data]

 $b_{\mu i} = \mu + b_{\mu} + b_{i}$ [baseline estimator]

Neighborhood Model

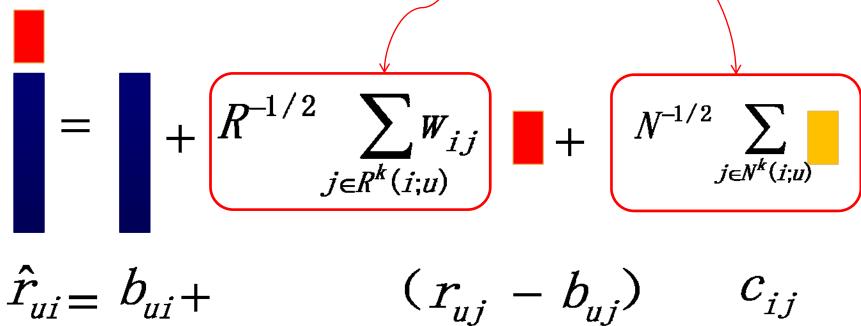
Solution Estimate \hat{r}_{ui} by using known ratings made by user for similar movies:



Neighborhood models- Revised

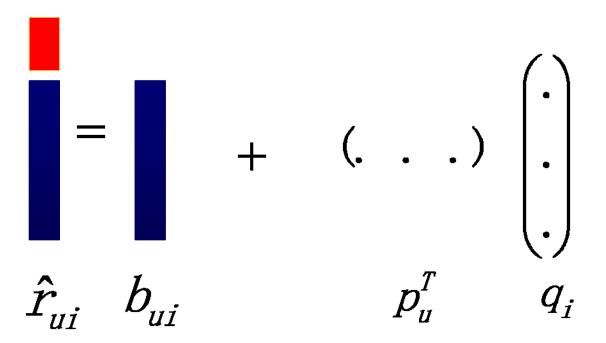
New Neighborhood model:

- introduce implicit feedback effect
- use global rather than user-specific weights
- New predicting rule:



Latent Models

*Estimate \hat{r}_{ui} by uncover latent features that explain observed ratings:

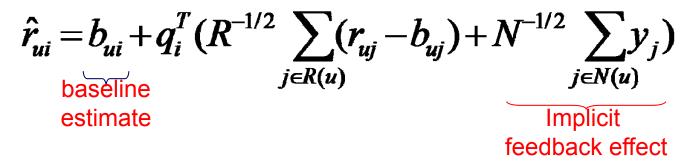


• p_u, q_i are user-factors vector and item-factors vector respectively

Latent Model- Revised

Introduce implicit feedback information

Asymmetric-SVD



SVD++

No theoretical explanation, it just works!

$$\hat{r}_{ui} = b_{ui} + q_i^T (p_u + N^{-1/2} \sum_{j \in N(u)} y_j)$$

This model will be integrated with Neighborhood Model

How well does it work?

• Here is the result.

Test (Instructions)

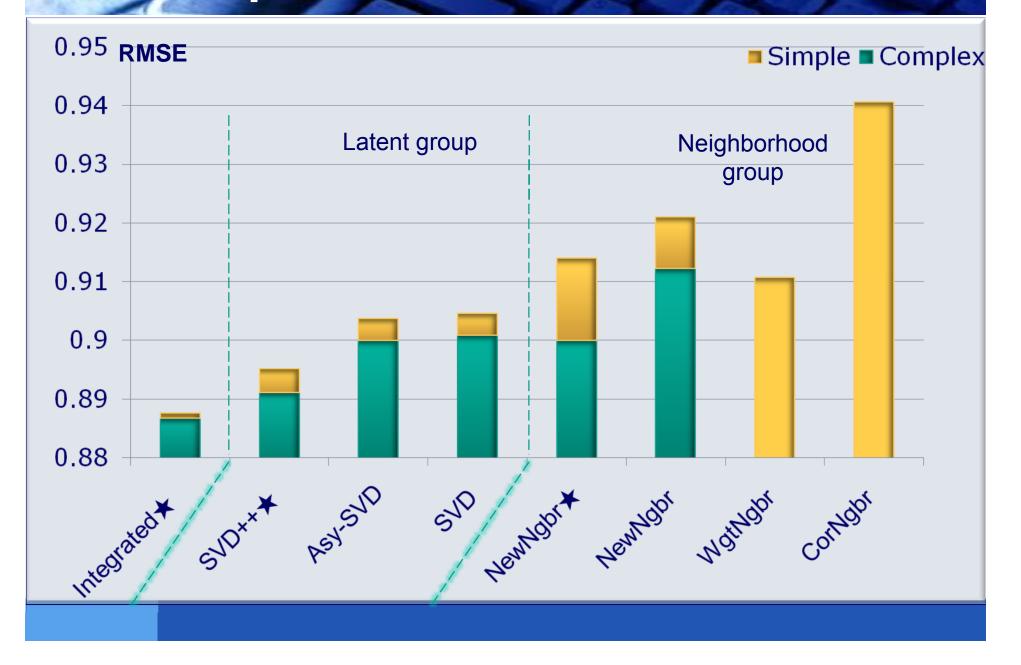
Measured by Root Mean Square Error (RMSE)

$$\sqrt{\sum_{(u,i)\in TestSet}(r_{ui} - \hat{r}_{ui})^2/|TestSet|}$$

Abbreviation instructions			
Integrated ★	Proposed Integrated Model		
SVD++★	Proposed improved Latent Factor		
SVD	Common Latent Factor		
New Ngbr★	Proposed neighborhood, with implicit feedback		
New Ngbr	Proposed neighborhood, without implicit feedback		
WgtNgbr	improved neighborhood of the same user		
CorNgbr	Popular neighborhood method		

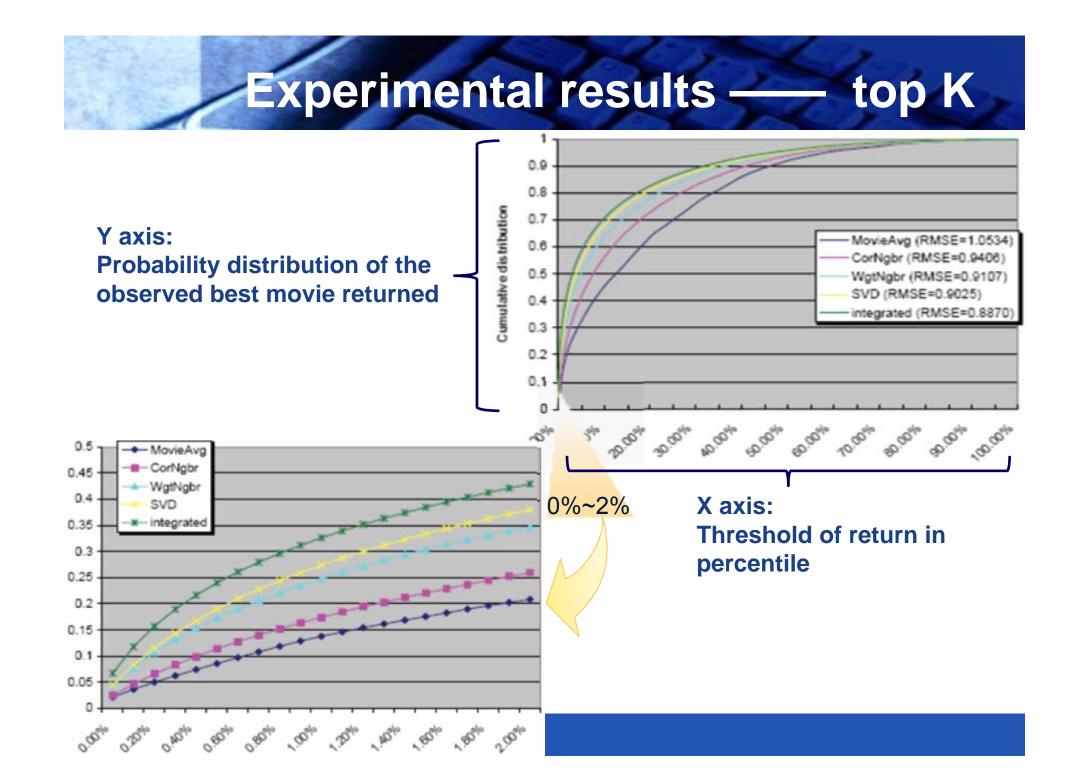
Experimental results —

RMSE

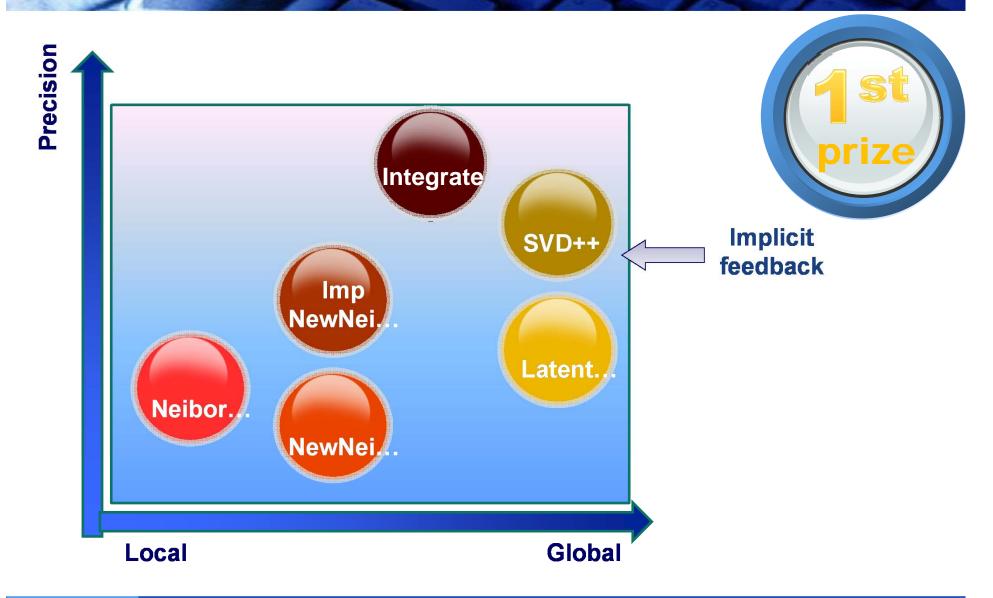


Time cost

Time*(min) Neighbors Precision	10 250 0.9014	27 500 -0.0010	58 Infinity -0.0004
Time*(min)			
Factors	50	100	200
Precision	0.8952	-0.0028	-0.0013
Integrate	d		
Гime(min)	17	20	25
Neighbors	300	300	300
Factors	50	100	200
Precision	0.8877	-0.0007	-0.0002



Conclusion



Hard to beat, but...

Ignored time-stamps

- •Time-stamps available (from 1998 to 2005)
- Temporal dynamics matters

Example 1

6 years later...

Hard to beat, but...

Ignored time-stamps

- •Time-stamps available (from 1998 to 2005)
- •Temporal dynamics matters

Example 2

Hard to beat, but...

Temporal dynamics are too personal

Represented in author's latest publication, with comparisonMay move the model towards local level

References

- Yehuda Koren, Factorization meets the neighborhood: a multifaceted collaborative filtering model, in Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining (Las Vegas, Nevada, USA: ACM, 2008), 426-434
- Yehuda Koren, The BellKor Solution to the Netflix Grand Prize, August 2009

Ouestions?