Data Mining

Optimizing Search Engines using Clickthrough Data (Thorsten Joachims)

Dimitrios Milios Anastasios Polymeros

Data Mining in the service of Information Retrieval

Goal: Optimize retrieval quality of Search Engines

Exploit user preferences as recorded in the logfiles of search engines

Train a Ranking SVM algorithm

Data Mining in the service of Information Retrieval

- Training data can be generated by relevance judgement by experts
- Difficult and expensive procedure
- Instead, use logs of links that the users clicked on
- Such data is available in abundance, at very low cost

Clickthrough Data

- Triplets (q, r, c)
 - **q**: query
 - r: ranking presented to the user
 - c: set of links that the user clicked on
- Can be recorded with little overhead

Recording Clickthrough Data

- Clicks recorded in a proxy-system's log file
- A unique ID is assigned to each query
- Links on the results page point to the proxyserver
- The proxy-server records the clicked URL and query ID
- Finally, the proxy forwards the user to the target URL
- The whole process is transparent to the user

Information that can be elicited

- Ranking r is dependent on query q
- Set of links c is dependent on
 - q: it depends on the relevance to the query
 - r: it is unlikely to click on a link low in the ranking, no matter its relevance
- The users click on the relatively most promising links, among the top ones, independent on their absolute relevance

Information that can be elicited: Example

1. Kernel Machines http://svm.first.gmd.de/ 2. Support Vector Machine http://jbolivar.freeservers.com/ 3. SVM-Light Support Vector Machine http://ais.gmd.de/~thorsten/svm_light/ 4. An Introduction to Support Vector Machines http://www.support - vector.net/ 5. Support Vector Machine and Kernel Methods References http://svm.research.bell - labs.com/SVMrefs.html 6. Archives of SUPPORT-VECTOR-MACHINES@JISCMAIL.AC.UK http://www.jiscmail.ac.uk/lists/SUPPORT-VECTOR-MACHINES.html7. Lucent Technologies: SVM demo applet http://svm.research.bell - labs.com/SVT/SVMsvt.html 8. Royal Holloway Support Vector Machine http://svm.dcs.rhbnc.ac.uk/ 9. Support Vector Machine - The Software http://www.support - vector.net/software.html 10. Lagrangian Support Vector Machine Home Page http://www.cs.wisc.edu/dmi/lsvm

Information that can be elicited: Example

- Links 1, 3, 7 are relevant on an absolute scale
- Link 3 is more relevant than link 2
 - $link_3 <_{r*} link_2$
- Link 7 is more relevant than 2, 4, 5, 6
 - $link_7 <_{r*} link_2$
 - $link_7 <_{r*} link_4$
 - $link_7 <_{r*} link_5$
 - $link_7 <_{r*} link_6$

Information that can be elicited

- Clickthrough data does not convey absolute relevance judgements
- Instead, partial relative relevance judgements are conveyed for the links the user browsed through.
 - *relative*: some link are better than others
 - *partial*: there is no information for all of the links

Extracting Preference Feedback from Clickthrough data

For ranking (link₁, link₂, link₃, ...) and a set C containing the ranks of clicked-on links, extract a preference example:

$$-link_i <_{r*} link_j$$

-for all pairs $1 \le j \le i$, with $i \in C$ and $j \notin C$

The function to be optimized

- Optimum ordering $r * \subset D \times D$
 - Documents **D** are ordered according to their relevance to the query
- Ordering $r_{f(q)} \subset D \times D$
 - given by a function **f**, for a query **q**
- Maximization of similarity between **r*** and $\mathbf{r}_{f(q)}$

Definition of similarity

Assume orderings

 $- r_a \subset D \times D$ $- r_b \subset D \times D$

- $(d_i, d_j) \in D \times D, d_i \neq d_j$
- Concordant pairs P: if both r_a and r_b agree in how they order d_i, d_i
- Discordant pairs Q: if r and r disagree in how they order d, d

Definition of similarity

• Kentall's τ:

$$-\tau(r_a,r_b) = \frac{P-Q}{P+Q} = 1 - \frac{2Q}{\binom{m}{2}}$$

where m, the number of documents in the collection D

The function to be optimized

Learn a ranking function **f** so as to maximize:

$$- \tau_{P}(f) = \int \tau(r_{f(q)}, r*) dPr(q, r*)$$

- for a fixed but unknown distribution Pr(q, r*) of queries and target rankings
- training set is a sample of Pr(q, r*)

- Φ(q, d) is a mapping onto features that describe the match between query q and document d
- Consider the class of linear ranking functions

$$(d_i, d_j) \in f_{\vec{w}}(q) \Leftrightarrow \vec{w} \Phi(q, d_i) > \vec{w} \Phi(q, d_j)$$

 For any weight vector w, the documents are ordered by the projection onto w

Instead of directly maximizing

 $\tau_P(f) = \int \tau(r_{f(q)}, r*) dPr(q, r*)$

- Minimize discordant pairs ${\bf Q}$
- Find the weight vector so that the maximum number of the following inequalities is fulfilled

$$\forall (d_i, d_j) \in r_k * \Leftrightarrow \vec{w} \Phi(q_k, d_i) > \vec{w} \Phi(q_k, d_j)$$

- where $1 \le k \le n$

- NP-hard optimization problem
- Introduce slack variables $\boldsymbol{\xi}_{_{\rm II}}$
- Minimize the upper bound $\sum \xi_{i,i,k}$

•
$$V(\vec{w}, \vec{\xi}) = \frac{1}{2} \vec{w} \cdot \vec{w} + C \sum \xi_{i, j, k}$$

Subject to:

 $\forall (d_i, d_j) \in r_k * \Leftrightarrow \vec{w} \Phi(q_k, d_i) \ge \vec{w} \Phi(q_k, d_j) + 1 - \xi_{i, j, k}$ $\forall i \forall j \forall k : \xi_{i, j, k} \ge 0$

- C allows trading-off margin size against training error

Relation to Classification SVM Algorithm

• The inequalities in the previous slide can be rearranged as well:

$$- \vec{w}(\Phi(q, d_i) - \Phi(q, d_j)) \ge 1 - \xi_{i, j, k}$$

- The optimization problem is equivalent to that of classification SVM on pairwise difference vectors $\Phi(q, d) \Phi(q, d)$
- *SVM*^{light} is used for training

- Learned retrieval function $\mathbf{f}_{_{\!\!\mathcal{M}\!}}$ can be shown as linear combination of feature vectors

$$- (d_i, d_j) \in f_{\vec{w}*} (q)$$

$$\Leftrightarrow \vec{w} * \quad \Phi(q, d_i) > \vec{w} * \quad \Phi(q, d_j)$$

$$- \text{ where: } \vec{w} * = \sum a_{k,l} * \quad \Phi(q_k, d_l)$$

• Kernels could be used, and extend the algorithm to non-linear functions

- To produce a ranking using $\mathbf{f}_{_{\!\!\mathcal{M}^{\!\!*}}}$, according to a new query \mathbf{q} :

- sort the documents by their value of:

$$rsv(q,d_i) = \sum a_{k,l} * \Phi(q_k,d_l) \Phi(q,d_i)$$

Experiment setup

- Striver Meta-Search Engine
 - Google
 - MSNSearch
 - Excite
 - Altavista
 - Hotbot
- Striver ranks the union of the results according to the learned $\mathbf{f}_{_{\!M^*}}$

Experiment setup

- In order to compare two rankings A and B
 - Combine into a single ranking \boldsymbol{C}
 - **C** contains the top \mathbf{k}_{a} links from **A**, and the top \mathbf{k}_{b} links from **B**, where $|k_{a} k_{b}| \le 1$
 - The user should not be able to tell which retrieval method proposed each link
 - Assume that the user probably clicks on the most relevant links
- If the user clicks on significantly more links from A than from B, then A must contain more relevant links

Combination into single ranking -Example

Ranking A:

- Kernel Machines http://svm.first.gmd.de/
- SVM-Light Support Vector Machine http://ais.gmd.de/ ~ thorsten/svm_light/
- Support Vector Machine and Kernel ... References http://svm....com/SVMrefs.html
- Lucent Technologies: SVM demo applet http://svm....com/SVT/SVMsvt.html
- Royal Holloway Support Vector Machine http://svm.dcs.rhbnc.ac.uk/
- Support Vector Machine The Software http://www.support-vector.net/software.html
- 7. Support Vector Machine Tutorial http://www.support-vector.net/tutorial.html
- Support Vector Machine http://jbolivar.freeservers.com/

Ranking B:

- Kernel Machines http://svm.first.gmd.de/
- Support Vector Machine http://jbolivar.freeservers.com/
- An Introduction to Support Vector Machines http://www.support-vector.net/
- Archives of SUPPORT-VECTOR-MACHINES ... http://www.jiscmail.ac.uk/lists/SUPPORT...
- SVM-Light Support Vector Machine http://ais.gmd.de/ ~ thorsten/svm_light/
- Support Vector Machine The Software http://www.support_vector.net/software.html
- Lagrangian Support Vector Machine Home Page http://www.cs.wisc.edu/dmi/lsvm
- A Support ... Bennett, Blue (ResearchIndex) http://citeseer.../bennett97support.html

Combined Results:

- 1	
	1. Kernel Machines
	http://svm.first.gmd.de/
	2. Support Vector Machine
	http://jbolivar.freeservers.com/
	3. SVM-Light Support Vector Machine
	$http://ais.gmd.de/ \sim thorsten/svm_light/$
	4. An Introduction to Support Vector Machines
	http://www.support - vector.net/
	5. Support Vector Machine and Kernel Methods References
	http://svm.research.bell = labs.com/SV Mrefs.html
	6. Archives of SUPPORT-VECTOR-MACHINES@JISCMAIL.AC.UK
	http://www.jiscmail.ac.uk/lists/SUPPORT-VECTOR-MACHINES.html
	7. Lucent Technologies: SVM demo applet
	http://svm.research.bell = labs.com/SVT/SVMsvt.html
	8. Royal Holloway Support Vector Machine
	http://svm.dcs.rhbnc.ac.uk/
	9. Support Vector Machine - The Software
	http://www.support - vector.net/software.html
	10. Lagrangian Support Vector Machine Home Page
	http://www.cs.wisc.edu/dmi/lsvm

Offline experiment

- Compare Against
 - Google, MSNSearch
- 112 queries with non-empty sets of clicks
- Design a feature mapping $\Phi(q, d)$
 - The set of features is not optimal

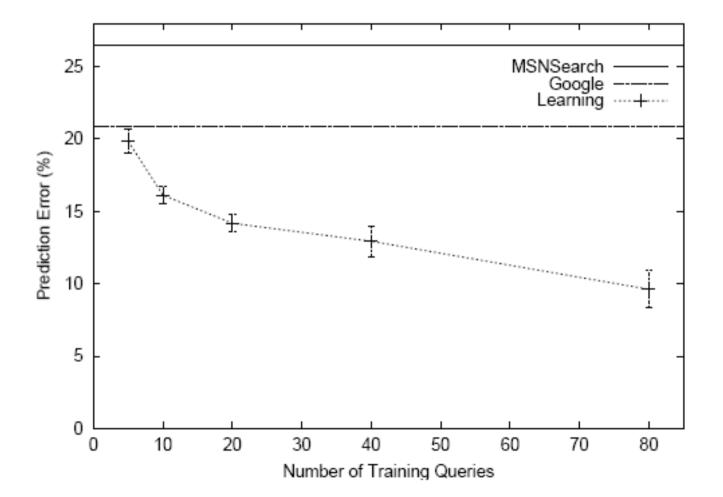
Offline experiment – Feature Mapping

1. Rank in other search engines (38 features total):

- rank_X: 100 minus rank in X ∈ {Google, MSN-Search, Altavista, Hotbot, Excite} divided by 100 (minimum 0)
- **top1_X:** ranked #1 in $X \in \{Google, MSNSearch, Altavista, Hotbot, Excite\} (binary <math>\{0, 1\}$)
- **top10_X:** ranked in top 10 in $X \in \{Google, MSNSearch, Altavista, Hotbot, Excite\} (binary <math>\{0, 1\}$)
- **top50_X:** ranked in top 50 in $X \in \{Google, MSNSearch, Altavista, Hotbot, Excite\} (binary <math>\{0, 1\}$)
- top1count_X: ranked #1 in X of the 5 search engines
- top10count_X: ranked in top 10 in X of the 5
 search engines
- top50count_X: ranked in top 50 in X of the 5 search engines

2. Query/Content Match (3 features total):

query_url_cosine: cosine between URL-words
 and query (range [0, 1])
query_abstract_cosine: cosine between title words and query (range [0, 1])
domain_name_in_query: query contains
 domain-name from URL (binary {0, 1})


3. Popularity-Attributes (~ 20.000 features total):

- url_length: length of URL in characters divided by 30
- **country_X:** country code X of URL (binary attribute {0, 1} for each country code)

Offline experiment

- Split data into a training and a test set
- Test ranking SVM for a different number of training queries
 - The more the queries, the better the performance
- Trade-off between training error and margin was selected from $C \in \{0.001, 0.003, 0.005, 0.01\}$
 - Minimizing leave-one-out error on the training set

Offline experiment

Online experiment

- Striver was made available to a group of 20 users
- Compare Striver's learned function f_w
 against:
 - Google, MSNSearch, Toprank
- The comparison is based on the number of links clicked from each one of the strategies

Comparison	more clicks on learned	less clicks on learned	tie (with clicks)	no clicks	total
Learned vs. Google	29	13	27	19	88
Learned vs. MSNSearch	18	4	7	11	40
Learned vs. Toprank	21	9	11	11	52

Analysis of the Learnt Function

- High positive weights indicate that documents with these features should be higher in ranking
- High negative weights indicate that documents with these features should be lower in ranking
- Most training queries were for scientific material, which is reflected in the weighting
 - e.g. URLs for domain "citeseer" received positive weight

Analysis of the Learnt Function

weight	feature
0.60	query_abstract_cosine
0.48	top10_google
0.24	query_url_cosine
0.24	$top1count_1$
0.24	$top 10_msnsearch$
0.22	host_citeseer
0.21	domain_nec
0.19	$top10count_3$
0.17	$top1_google$
0.17	country_de
0.16	$abstract_contains_home$
0.16	$top1_hotbot$
0.14	domain_name_in_query
-0.13	$domain_tu$ -bs
-0.15	country_fi
-0.16	$top50count_4$
-0.17	url_length
-0.32	$top10count_0$
-0.38	top1count_0

Conclusions

- Data mining logfiles of WWW search engines
- It is verified that Ranking SVM can learn an improved retrieval function from clickthrough data
- Adapting the retrieval function to the preferences of a group of users

Data Mining

Thank You

Dimitrios Milios Anastasios Polymeros