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Data Mining in the service of 
Information Retrieval

 Goal: Optimize retrieval quality of 
Search Engines

Exploit user preferences as recorded in the  
logfiles of search engines

 Train a Ranking SVM algorithm



  

Data Mining in the service of 
Information Retrieval

● Training data can be generated by 
relevance judgement by experts

● Difficult and expensive procedure
● Instead, use logs of links that the users 

clicked on
● Such data is available in abundance, at 

very low cost



  

Clickthrough Data

● Triplets (q, r, c)
– q: query

– r: ranking presented to the user

– c: set of links that the user clicked on

● Can be recorded with little overhead



  

Recording Clickthrough Data

● Clicks recorded in a proxy-system’s log file
● A unique ID is assigned to each query
● Links on the results page point to the proxy-

server
● The proxy-server records the clicked URL 

and query ID
● Finally, the proxy forwards the user to the 

target URL
● The whole process is transparent to the 

user



  

Information that can be elicited

● Ranking r is dependent on query q
● Set of links c is dependent on

– q: it depends on the relevance to the query

– r: it is unlikely to click on a link low in the 
ranking, no matter its relevance

● The users click on the relatively most 
promising links, among the top ones, 
independent on their absolute relevance



  

Information that can be elicited: 
Example



  

Information that can be elicited: 
Example
● Links 1, 3, 7 are relevant on an absolute scale

● Link 3 is more relevant than link 2

–

● Link 7 is more relevant than 2, 4, 5, 6

–

–

–

–

link 3r∗ link 2

link 7r∗ link 2
link 7r∗ link 4
link 7r∗ link 5
link 7r∗ link 6



  

Information that can be elicited

● Clickthrough data does not convey 
absolute relevance judgements 

● Instead, partial relative relevance 
judgements are conveyed for the links the 
user browsed through.

– relative: some link are better than others

– partial: there is no information for all of the 
links 



  

Extracting Preference Feedback 
from Clickthrough data
● For ranking (link

1
, link

2
, link

3
, ...) and a set C 

containing the ranks of clicked-on links, 
extract a preference example:

–

–

link ir∗ link j

for all pairs1≤ ji , with i∈C and j∉C



  

The function to be optimized

● Optimum ordering
– Documents D are ordered according to 

their relevance to the query

● Ordering 
– given by a function f, for a query q

● Maximization of similarity between 

r* and r
f(q)

r∗ ⊂D×D

r f q ⊂D×D



  

Definition of similarity

● Assume orderings 
–

–

●

● Concordant pairs P: if both r
a
 and r

b
 agree in 

how they order d
i
, d

j

● Discordant pairs Q: if r
a
 and r

b
 disagree in 

how they order d
i
, d

j

r a⊂D×D
r b⊂D×D

d i , d j∈D×D ,d i≠d j



  

Definition of similarity

● Kentall's τ:

–

– where m, the number of documents in the 
collection D

τ r a , r b=
P−Q
PQ

=1−
2Q

m2 



  

The function to be optimized

● Learn a ranking function f so as to 
maximize:

–

– for a fixed but unknown distribution Pr(q, r*) 
of queries and target rankings

– training set is a sample of Pr(q, r*)

τ P f =∫ τ  r f q  , r∗ d Pr q , r∗ 



  

Ranking SVM Algorithm

● Φ(q, d) is a mapping onto features that 
describe the match between query q and 
document d

● Consider the class of linear ranking 
functions

– For any weight vector w, the documents 
are ordered by the projection onto w

d i , d j∈ f w q⇔ wΦ q ,d iwΦ q ,d j



  

Ranking SVM Algorithm

● Instead of directly maximizing 

● Minimize discordant pairs Q 
● Find the weight vector so that the maximum 

number of the following inequalities is fulfilled

– where

τ P f =∫ τ  r f q  , r∗ d Pr q , r∗ 

∀d i , d j∈r k∗ ⇔wΦ qk , d iwΦ qk , d j

1≤k≤n



  

Ranking SVM Algorithm

● NP-hard optimization problem

● Introduce slack variables ξ
i,j,k

● Minimize the upper bound 

●

– Subject to:

– C allows trading-off margin size against training error

∑ ξ i , j , k

V  w ,ξ =
1
2
w⋅wC∑ ξ i , j , k

∀d i , d j∈r k∗ ⇔wΦ qk , d i≥wΦ qk , d j1−ξ i , j ,k
∀ i∀ j∀ k :ξ i , j , k≥0



  

Relation to 
Classification SVM Algorithm
● The inequalities in the previous slide can be 

rearranged as well:
–

● The optimization problem is equivalent to 
that of classification SVM on pairwise 
difference vectors Φ(q, d

i
) – Φ(q, d

j
)

● SVMlight is used for training

w Φ q ,d i −Φ q ,d j≥1−ξ i , j ,k



  

Ranking SVM Algorithm

● Learned retrieval function f
w*
 can be shown 

as linear combination of feature vectors
–

–  where:

● Kernels could be used, and extend the 
algorithm to non-linear functions

d i , d j∈ f w∗ q 

⇔ w∗ Φ q ,d iw∗ Φq ,d j

w∗ =∑ ak , l∗ Φqk , d l 



  

Ranking SVM Algorithm

● To produce a ranking using f
w*
, according to 

a new query q: 
– sort the documents by their value of:

rsv q ,d i=∑ ak , l∗ Φ qk , d lΦ q ,d i 



  

Experiment setup

● Striver Meta-Search Engine
– Google

– MSNSearch

– Excite

– Altavista

– Hotbot

● Striver ranks the union of the results 
according to the learned f

w*
 



  

Experiment setup

● In order to compare two rankings A and B
– Combine into a single ranking C

– C contains the top k
a
 links from A, and the 

top k
b
 links from B, where |k

a
 – k

b
| ≤ 1

– The user should not be able to tell which 
retrieval method proposed each link

– Assume that the user probably clicks on the 
most relevant links

● If the user clicks on significantly more links 
from A than from B, then A must contain 
more relevant links



  

Combination into single ranking - 
Example



  

Offline experiment

● Compare Against
–  Google, MSNSearch

● 112 queries with non-empty sets of clicks
● Design a feature mapping Φ(q, d)

– The set of features is not optimal



  

Offline experiment – 
Feature Mapping



  

Offline experiment

● Split data into a training and a test set
● Test ranking SVM for a different number of 

training queries
– The more the queries, the better the 

performance

● Trade-off  between training error and margin 
was selected from

–  Minimizing leave-one-out error on the 
training set

C∈{0.001,0.003,0.005, 0.01}



  

Offline experiment



  

Online experiment

● Striver was made available to a group of 20 
users

● Compare Striver's learned function f
w*
 

against:
– Google, MSNSearch, Toprank

● The comparison is based on the number of 
links clicked from each one of the strategies



  

Analysis of the Learnt Function

● High positive weights indicate that 
documents with these features should be 
higher in ranking

● High negative weights indicate that 
documents with these features should be 
lower in ranking

● Most training queries were for scientific 
material, which is reflected in the weighting

– e.g. URLs for domain “citeseer” received 
positive weight



  

Analysis of the Learnt Function



  

Conclusions

● Data mining logfiles of WWW search 
engines

● It is verified that Ranking SVM can learn an 
improved retrieval function from clickthrough 
data

● Adapting the retrieval function to the 
preferences of a group of users



  

Data Mining

Thank You

Dimitrios Milios
Anastasios Polymeros
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