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Introduction

- A new framework for discovering interactions 
between genes
- Based on multiple expression measurements
- Using a Bayesian network to represent statistical 
dependencies 
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Biological Background

- Genes expression is responsible for cell 
activity. 
- Protein synthesis is regulated by many 
mechanisms at its different levels



- Molecular Biology : 
Understand the regulation of 
protein synthesis
-Technical breakthroughs lead 
to development of DNA 
microarrays



A Machine Learning Challenge

- Analysing microarrays samples to extract biological 
interactions :

- Discover co-regulated genes
- Reveal the structure of the transcriptional 
regulation system 

- Previous attempts using clustering algorithms



Bayesian Networks
A

B

C

- A graphical representation of a probability 
distribution
- Represent the dependence structure between 
multiple interactive quantities

- In this basic example :
-P(A,B,C)=P(A)P(B|A)P(C|B)
- Conditional Independence :

-P(A|B,C)=P(A|B) 



Bayesian Networks : Advantages

- Compact & intuitive representation
- Captures causal relationships
- Efficient model learning
- Deals with noisy data
- Integration of prior knowledge
- Effective inference for experiment planning



An example in context
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- P(A,B,C,D,E)=P(A)P(B|A,E)P(C|B)P(D|A)P(E)
- I(A;E)
- I(B;D | A;E)
- I(C;A,D,E | B)
- I(D;B,C,E | A)
- I(E;A, D)



Equivalence classes of 
Bayesian Networks
- Two different graphs can imply the same set of 
independencies

- Example : X Y & X Y→ ←
- Two graphs G & G’ are equivalent if Ind(G)=Ind(G’) 
- An equivalence class of network can be uniquely 
represented by a Partially Directed Acyclic Graph 
(PDAG)



Learning Bayesian Networks

- Optimization problem
- Given a training set D, find the network B = <G,Θ> that 
best matches D
- Evaluation of the networks is done using the Bayesian 
scoring metric
- Score(G:D) = log P(G|D) = log P(D|G)+ log P(G) + C
- Marginal likelihood : P(D|G) = ʃ P(D|G,Θ)P(Θ|G)dΘ
- If G & G’ are structure equivalent, they will have the same 
score



Learning Causal Patterns

- A Bayesian network models dependencies
- We need to model a flow of causality : a causal 
network
- Its representation is similar to a Bayesian network
- Causal networks not only models the distribution of 
the observations but also the effects of interventions
- We can learn an equivalence class from the data, and 
infer some causal directions from the PDAG



Applying Bayesian Networks to 
Expression Data
- The expression level of each gene is modelled as 
random variables
- These can include a variety of attributes such as 
experimental conditions
- Issues

-Massive number of variables
-Small number of samples
-Sparse network (only a small number of genes 
directly affect one another)



Representing Partial Models

- Not enough data to determine which model is the 
« right » one
- Pool of reasonable models should be considered
- Extract common features and focus on them

- Two kind of features
- Markov relations (is Y in the Markov blanket 
of X?)
- Order relations (is X an ancestor of Y)



Statistical Confidence in Features

- We want to estimate a measure of confidence in the features of the 
learned networks
- An effective and simple approach : Bootstrap method



Sparse Candidate Algorithm

- An optimization problem in the space of directed acyclic graphs
- Complexity of the problem : super-exponential in the number of 
variables
- The Sparse Candidate Algorithm focuses on small regions of the 
search space

- For each gene, we can identify a relatively small number of 
candidate parents 
- Search space restricted to the networks where the candidate 
parents are parents of the gene



Data preprocessing

- Need to define local probability models 
- Gene expression values discretized into three categories : -1, 0,  
and 1 

- loss of information
- but reasonably unbiased approach compared to other 
alternatives such as semiparametric density models



The experimentation

- 800 genes
- 76 gene expression measurements

- 6 time series 
- this temporal dimension was introduced 
as an additional variable in the network

-  Bayesian networks learned using the 
Sparse Candidate algorithm with a 200-fold 
bootstrap (m)



Robustness Evaluation

- Analysis of the statistical significance and robustness of the 
procedure
- Tests done on a smaller gene data set (250)
- Method : Randomize the gene order (random data set)

- genes independent of each others : hence no expectation 
to find « real » features



Histograms of the number of
Features at different
Confidence levels





Comparison of confidence levels obtained in two datasets differing in the number of genes, 
on the multinomial experiment. Each relation is shown as a point, with the x-coordinate being 
its confidence in the the 250 genes data set and the y-coordinate the confidence in the 800 
genes data set. The left figure shows order relation features, and the right figure shows 
Markov relation features.



Comparison of of confidence levels between the multinomial experiment and the linear-
Gaussian experiment. Each relation is shown as a point, with the x-coordinate being its 
confidence in the multinomial experiment, and the y-coordinate its confidence in the linear-
Gaussian experiment. The left figure shows order relation features, and the right figure shows 
Markov relation features.



Results

An example of the graphical display of 
Markov features. This graph shows a 
“local map” for the gene SVS1. The 
width (and color) of edges corresponds 
to the computed confidence level. An 
edge is directed if there is a sufficiently 
high confidence in the order between the
genes connected by the edge.



Results : Order relations

- Dominant genes : with high confidence order relations
- Could be genes involved in cell-cycle process



Results : Markov relations
- Most pairs are functionaly related
- Plus : Make biological sense 



Conclusion

- New approach for analysing gene expression using bayesian 
networks
- Make use of the Sparse Search Algorithm and bootstrap method
- Different from earlier clustering approaches : try to learn the 
structure of the process/data
- It fits well the stochastic nature of biological processes and noisy 
experiments
- Study of the statistical robustness
- Interesting biological findings without any prior of biological 
knowledge / constraints in the model



Improvements
- Combine clustering and Bayesian networks approaches
- Improve testing methods to estimate the confidence level
- Incorporate biological knowledge as prior knowledge
- Improve the heuristic search
- Incorporate the temporal dimension of the data (Dynamic 
Bayesian Networks)



Results
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