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| ntroduction

- A new framework for discovering interactions
between genes

- Based on multiple expression measurements

- Using a Bayesian network to represent statistical
dependencies
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Biological Background &y%ﬁ

- Genes expression 1s responsible for cell .
activity.

- Protein synthesis 1s regulated by many

mechanisms at its different levels




- Molecular Biology :
Understand the regulation of
protein synthesis

-Technical breakthroughs lead
to development of DNA
microarrays




A Machine Learning Challenge

- Analysing microarrays samples to extract biological
interactions :
- Discover co-regulated genes
- Reveal the structure of the transcriptional
regulation system

- Previous attempts using clustering algorithms



Bayesian Networks

- A graphical representation of a probability
distribution

- Represent the dependence structure between
multiple interactive quantities

- In this basic example :
-P(A,B,C)=P(A)P(BIA)P(C|B)
- Conditional Independence:
-P(A|B,C)=P(A|B)



Bayesian Networks : Advantages

- Compact & intuitive representation

- Captures causal relationships

- Efficient model learning

- Deals with noisy data

- Integration of prior knowledge

- Effective inference for experiment planning



An example In context

- P(A,B,C,D,E)=P(A)P(B|A,E)P(C|B)P(D|A)P(E)
- I(AE)

-1(B;D | AsE)

- I(C;A,D,E | B)

-1(D;B,C,E | A)

- I(E;A, D)




Equivalence classes of
Bayesian Networks

- Two different graphs can imply the same set of
independencies

-Example: X-> Y & X< Y
- Two graphs G & G’ are equivalent if Ind(G)=Ind(G”)
- An equivalence class of network can be uniquely
represented by a Partially Directed Acyclic Graph
(PDAG)



L earning Bayesian Networks

- Optimization problem

- G1ven a training set D, find the network B = <G,0> that
best matches D

- Evaluation of the networks 1s done using the Bayesian
scoring metric

- Score(G:D) = log P(G|D) = log P(D|G)+ log P(G) + C

- Marginal likelihood : P(D|G) = | P(D|G,0)P(®|G)d®

- If G & G’ are structure equivalent, they will have the same
score



Learning Causal Patterns

- A Bayesian network models dependencies

- We need to model a flow of causality : a causal
network

- Its representation is similar to a Bayesian network

- Causal networks not only models the distribution of
the observations but also the effects of interventions

- We can learn an equivalence class from the data, and
infer some causal directions from the PDAG



Applying Bayesian Networksto
Expression Data

- The expression level of each gene 1s modelled as
random variables
- These can include a variety of attributes such as
experimental conditions
- Issues
-Massive number of variables
-Small number of samples
-Sparse network (only asmall number of genes
directly affect one another)



Representing Partial Models

- Not enough data to determine which model is the

« right » one

- Pool of reasonable models should be considered

- Extract common features and focus on them

- Two kind of features

- Markov relations (is'Y in the Markov blanket
of X?)
- Order relations (is X an ancestor of Y)



Statistical Confidence in Features

- We want to estimate a measure of confidence in the features of the
learned networks
- An effective and simple approach : Bootstrap method

e Fori=1...m

— Re-sample with replacement. N instances from /). Denote by ), the resulting data set.
— Apply the learning procedure on /), to induce a network structure (5.

L

e For each feature f of imnterest calculate confidence( /) = Ii Yo f(G;), where () is 1if [ isa
feature 1n (7. and 0 otherwise.



Sparse Candidate Algorithm

- An optimization problem 1in the space of directed acyclic graphs

- Complexity of the problem : super-exponential in the number of
variables

- The Sparse Candidate Algorithm focuses on small regions of the
search space

- For each gene, we can identify arelatively small number of
candidate parents

- Search space restricted to the networks where the candidate
parents are parents of the gene



Data preprocessing

- Need to define local probability models

- Gene expression values discretized into three categories : -1, 0,
and 1

- loss of Information

- but reasonably unbiased approach compared to other
alternatives such as semiparametric density models



The experimentation

- 800 genes
- 76 gene expression measurements
- 6 time series

- this temporal dimension was introduced [SEEIBRESE

as an additional variable in the network

- Bayesian networks learned using the
Sparse Candidate algorithm with a 200-fold
bootstrap (m)




Robustness Evaluation

- Analysis of the statistical significance and robustness of the
procedure

- Tests done on a smaller gene data set (250)
- Method : Randomize the gene order (random data set)

- genes independent of each others : hence no expectation
to find « real » features



Histograms of the number of |

Features at different
Confidence levels

Order Order

Original set Random set

Markov Markov

Original set Random set




Multinomial
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Order relations Markov relations
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Comparison of confidence levels obtained in two datasets differing in the number of genes,
on the multinomial experiment. Each relation is shown as a point, with the x-coordinate being
its confidence in the the 250 genes data set and the y-coordinate the confidence in the 800
genes data set. The left figure shows order relation features, and the right figure shows

Markov relation features.
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Comparison ot of contidence levels between the multinomial experiment and the linear-
Gaussian experiment. Each relation is shown as a point, with the x-coordinate being its
confidence in the multinomial experiment, and the y-coordinate its confidence in the linear-
Gaussian experiment. The left figure shows order relation features, and the right figure shows
Markov relation features.



Results

An example of the graphical display of
Markov features. This graph shows a
“local map” for the gene SVSI1. The
width (and color) of edges corresponds
to the computed confidence level. An
edge 1s directed if there is a sufficiently
high confidence in the order between the
genes connected by the edge.




Results : Order relations

- Dominant genes : with high confidence order relations

- Could be genes involved in cell-cycle process

Gene/ORF | Domunance | # of descendent genes

Score N =T notes
YLE183C 331 609 708 Contains forkheaded assosiated domain, thus possibly nuclear
MCD1 5350 599 710 Mitotic chromosome detenminant, null mutant 1s inviable
CLN2 497 495 624 Role in cell cycle START, mull mutant exhibits G1 arrest
SR04 463 403 639 Involved in cellular polarization during budding
RFA2 456 429 617 Involved in nucleotide excision repair, null mutant 1s urviable
YOLOOVC 444 367 624
GAS] 433 382 S86 Glveophospholipid surface protemn, Null mutant 1s slow growing
YOX1 400 243 356 Homeodomain protein that binds leu-tENA gene
YLROI3W 398 309 531
POL30 376 173 5320 Eequired for DNA replication and repair. Null mutant 15 inviable
RSE1 352 140 461 GTP-binding protemn of the ras fanuly mwvolved 1n bud site selection
CLNI1 324 74 404 Role in cell cycle START, mull mutant exhibits G1 arrest
YBROSOW 298 29 333
MSH6 284 7 325 Required for mismatch repair in nutosis and meiosis




Results : Markov relations

- Most pairs are functionaly related
- Plus : Make biological sense

Confidence | Gene 1 Gene 2 notes

1.0 YEKL163W-PIR3 | YKL164C-PIR1 | Close locality on chromosome

0985 PRY?2 YKRO12C No homolog found

0.983 MCD1 MSH6 Both bind to DNA during mitosis

098 PHO11 PHO12 Both nearly identical acid phosphatases

0975 HHT1 HTE1 Both are Histones

097 HTB2 HTAI1 Both are Histones

0.94 YNLOSTW YNLO38C Close locality on chromosome

0.94 YHRI143W CTs1 Homolog to EGT?2 cell wall control, both do cytokinesis

092 YOR263C YOR264W Close locality on chromosome

091 YGROE6 SIC1

09 FAR1 ASHI Both part of a mating tvpe switch. expression uncorelated

0.89 CLNZ SVS1 Function of SV51 unknown. possible regulation mediated through SWI6

088 YDERO3ZW NCE2 Homolog to transmembrame proteins, suggesting both iwolved in protain se-
cretion

0.86 STEZ MEA?Z A mating factor and receptor

0.85 HHF1 HHE2 Both are Histones

085 MET10 ECM17 Both are sulfite reductases

0.83 CDCo RAD27 Both participate in Okazaki fragment processing




Conclusion

- New approach for analysing gene expression using bayesian
networks

- Make use of the Sparse Search Algorithm and bootstrap method
- Different from earlier clustering approaches : try to learn the
structure of the process/data

- It fits well the stochastic nature of biological processes and noisy
experiments

- Study of the statistical robustness

- Interesting biological findings without any prior of biological
knowledge / constraints in the model



|mprovements

- Combine clustering and Bayesian networks approaches
- Improve testing methods to estimate the confidence level
- Incorporate biological knowledge as prior knowledge

- Improve the heuristic search

- Incorporate the temporal dimension of the data (Dynamic
Bayesian Networks)
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ABSTRACT

Motivation: Inferring the genetic interaction mechanism using
Bayesian networks has recently drawn increasing attention due to
its well-established theoretical foundation and statistical robustness.
However, the relative insufficiency of experiments with respect to the
number of genes leads to many false positive inferences.

Results: We propose a novel method to infer genetic networks
by alleviating the shortage of available mRNA expression data with
prior knowledge. We call the proposed method ‘modularized network
learning” (MONET). Firstly, the proposed method divides a whole
gene set to overlapped modules considering biological annotations
and expression data together. Secondly, it infers a Bayesian net-
work for each module, and integrates the learned subnetworks to
a global network. An algorithm that measures a similarity between
genes based on hierarchy, specificity and multiplicity of biological
annotations is presented. The proposed method draws a global picture
of inter-module relationships as well as a detailed look of intra-
module interactions. We applied the proposed method to analyze
Saccharomyces cerevisiae stress data, and found several hypotheses
to suggest putative functions of unclassified genes. We also com-

among nodes (Neapolitan. 2004). However, it is hard or nearly
umpossible to secure such sufficient amounts of expression profiles
when hundreds or thousands of genes are considered. This shortage
of observation data leads to many false positive edges: a signific-
ant portion of inferred relationships i1s not consistent with known
biological knowledge. To alleviate this problem, several techniques
mcorporating statistical biases and prior biological knowledge have
been proposed.

Friedman et af. (2000) have introduced two statistical techniques,
sparse candidates (Friedman ef a/., 1999) and model averaging. The
former restricts the maximum number of affecting genes for each
target gene so that the search space 1s reduced. The latter gener-
ates multiple networks from different initial conditions, and extracts
commonly inferred edges. Other groups have incorporated prior bio-
logical knowledge to refine network structures. Hartemink er al.
(2002) have applied the chromatin immuneo-precipitation (CHIP)
assay and Tamada er af. (2003) incorporated promoter sequence
motif information as prior knowledge. They both assumed that rela-
tionships between transcription factor genes and their target genes
should be supported by other biological clues. Recently, modulariz-



Cytoscape

An Open Source Platform for
Network Analysis and Visualization
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