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Data Preprocessing

Data preparation is a big issue for data mining. Cabena et al (1998)
estimate that data preparation accounts for 60% of the effort in a data
mining application.

I Data cleaning

I Data integration and transformation

I Data reduction

Reading: Han and Kamber, chapter 3
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Why Data Preprocessing?

Data in the real world is dirty. It is:
I incomplete, e.g. lacking attribute values
I noisy, e.g. containing errors or outliers
I inconsistent, e.g. containing discrepancies in codes or

names
GIGO: need quality data to get quality results
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Major Tasks in Data Preprocessing

Data cleaning

Data integration

Data transformation

Data reduction attributes attributes
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I Data cleaning
I Data integration
I Data transformation
I Data reduction

Figure from Han and Kamber
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Data Cleaning Tasks

I Handle missing values
I Identify outliers, smooth out noisy data
I Correct inconsistent data
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Missing Data and Outliers

I What happens if input data is missing? Is it missing at random
(MAR) or is there a systematic reason for its absence? Let xm
denote those values missing, and xp those values that are
present. If MAR, some “solutions” are

I Model P(xm|xp) and average (correct, but hard)
I Replace data with its mean value (?)
I Look for similar (close) input patterns and use them to infer

missing values (crude version of density model)
I Reference: Statistical Analysis with Missing Data R. J. A.

Little, D. B. Rubin, Wiley (1987)

I Outliers detected by clustering, or combined computer and
human inspection
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Data Integration

Combines data from multiple sources into a coherent store
I Entity identification problem: identify real-world entities

from multiple data sources, e.g. A.cust-id ≡ B.cust-num
I Detecting and resolving data value conflicts: for the same

real-world entity, attribute values are different, e.g.
measurement in different units
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Data Transformation

I Normalization, e.g. to zero mean, unit standard deviation

new data =
old data − mean

std deviation

or max-min normalization to [0, 1]

new data =
old data − min

max − min

I Normalization useful for e.g. k nearest neighbours, or for
neural networks

I New features constructed, e.g. with PCA or with
hand-crafted features
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Data Reduction

I Feature selection: Select a minimum set of features x̃ from x so
that:

I P(class|x̃) closely approximates P(class|x)
I The classification accuracy does not significantly decrease

I Data Compression (lossy)

I PCA, Canonical variates

I Sampling: choose a representative subset of the data

I Simple random sampling vs stratified sampling

I Hierarchical reduction: e.g. country-county-town
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Feature Selection

Usually as part of supervised learning
I Stepwise strategies

I (a) Forward selection: Start with no features. Add the one which
is the best predictor. Then add a second one to maximize
performance using first feature and new one; and so on until a
stopping criterion is satisfied

I (b) Backwards elimination: Start with all features, delete the one
which reduces performance least, recursively until a stopping
criterion is satisfied

I Forward selection is unable to anticipate interactions

I Backward selection can suffer from problems of overfitting

I They are heuristics to avoid considering all subsets of size k of d
features
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