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Descriptive Modelling

Descriptive models are a summary of the data
I Describing data by probability distributions

I Parametric models
I Mixture Models
I Non-parametric models
I Graphical models
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Descriptive Modelling

Descriptive models are a summary of the data
I Clustering

I Partition-based Clustering Algorithms
I Hierarchical Clustering
I Probabilistic Clustering using Mixture Models

Reading: HMS, chapter 9
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Describing data by probability distributions

I Parametric models, e.g. single multivariate Gaussian
I Mixture models, e.g. mixture of Gaussians, mixture of

Bernoullis
I Non-parametric models, e.g. kernel density estimation

f̂ (x) =
1
n

n∑
i=1

Kh(x − xi)

Does not provide a good summary of the data, expensive
to compute on large datasets

4 / 1



Probability Distributions: Graphical Models

I Mixture of Independence Models

654321X X X X X X

C

(also Naive Bayes model)
I Fitting a given graphical model to data
I Search over graphical structures

5 / 1

Clustering

Clustering is the partitioning of a data set into groups so that points in
one group are similar to each other and are as different as possible
from points in other groups

I Partition-based Clustering Algorithms

I Hierarchical Clustering

I Probabilistic Clustering using Mixture Models

Examples

I Split credit card owners into groups depending on what kinds of
purchases they make

I In biology, can be used to derive plant and animal taxonomies

I Group documents on the web for information discovery
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Defining a partition

I Clustering algorithm with k groups

I Mapping c from input example number to group to which it
belongs

I In Rd , assign to group j a cluster centre mj . Choose both c and
the mj ’s so as to minimize

n∑
i=1

|xi − mc(i)|2

I Given c, optimization of the mj ’s is easy; mj is just the mean of
the data vectors assigned to class j

I Optimiztion over c: cannot compute all possible groupings, use
the k -means algorithm to find a local optimum
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k -means algorithm

initialize centres m1, . . . , mk
while (not terminated)

for i = 1, . . . , n
calculate |xi − mj |2 for all centres
assign datapoint i to the closest centre

end for
recompute each mj as the mean of the
datapoints assigned to it

end while

I This is a batch algorithm.
I There is also an on-line version, where the centres are

updated after each datapoint is seen
I Also k -medoids; find a representative object for each

cluster centre
I Choice of k?
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Hierarchical clustering

for i = 1, . . . , n let Ci = {xi}
while there is more than one cluster left do

let Ci and Cj be the clusters minimizing
the distance D(Ci , Cj) between any two clusters
Ci = Ci ∪ Cj
remove cluster Cj

end

I Results can be displayed as a dendrogram
I This is agglomerative clustering; divisive techniques are

also possible
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Hierarchical Clustering
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Distance functions for hierarchical clustering

I Single link (nearest neighbour)

Dsl(Ci , Cj) = min
x,y

{d(x, y)|x ∈ Ci , y ∈ Cj}

The distance between the two closest points, one from each
cluster. Can lead to “chaining”.

I Complete link (furthest neighbour)

Dcl(Ci , Cj) = max
x,y

{d(x, y)|x ∈ Ci , y ∈ Cj}

I Centroid measure: distance between clusters is difference
between centroids

I Others possible
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Probabilistic Clustering

I Using finite mixture models, trained with EM

I Can be extended to deal with outlier by using an extra, broad
distribution to “mop up” outliers

I Can be used to cluster non-vectorial data, e.g. mixtures of
Markov models for sequences

I Methods for comparing choice of k

I Disadvantage: parametric assumption for each component

I Disadvantage: complexity of EM relative to e.g. k -means
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Graphical Models: Causality

I J. Pearl, Causality, Cambridge UP (2000)
I To really understand causal structure, we need to predict

effect of interventions
I Semantics of do(X = 1) in a causal belief network, as

opposed to conditioning on X = 1
I Example: smoking and lung cancer
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Causal Bayesian Networks

A causal Bayesian network is
a Bayesian network in which
each arc is interpreted as
a direct causal influence be-
tween a parent node and a
child node, relative to the
other nodes in the network.
(Gregory Cooper, 1999, sec-
tion 4)

Causation = behaviour under
interventions
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An Algebra of Doing

I Available: algebra of seeing (observation)
e.g. what is the chance it rained if we see that the grass is
wet?

P(rain|wet) = P(wet |rain)P(rain)/P(wet)

I Needed: algebra of doing
e.g. what is the chance it rained if we make the grass wet?

P(rain|do(wet)) = P(rain)
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Truncated factorization formula

P(x1, . . . , xn|x̂
′

i ) =

{ ∏
j 6=i P(xj |paj) if xi = x

′

i
0 if xi 6= x

′

i

P(x1, . . . , xn|x̂
′

i ) =

{ P(x1,...,xn)

P(x ′
i |pai )

if xi = x
′

i

0 if xi 6= x
′

i

compare with conditioning

P(x1, . . . , xn|x
′

i ) =

{ P(x1,...,xn)

P(x ′
i )

if xi = x
′

i

0 if xi 6= x
′

i
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Intervention as surgery on graphs

X

XX

X

X

Season

Wet

Slippery

Rain Sprinkler

3

4

5

1

2

= On

18 / 1

Controlling confounding bias

We wish to evaluate the effect of X on Y ; what other factors Z
(known as covariates or confounders) do we need to adjust for?
Simpson’s “paradox”: an event C increases the probability of E
in a population p, but decreases the probability of E in every
subpopulation.
E.g. UC-Berkeley investigated for sex-bias (1975). Overall,
higher rate of admission of males, but for every department
there was a slight bias in favour of admitting females.
[Explanation: females applied to more competitive departments
where admission rate was low]
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I Another example: administering a drug gives rise to lower
rates of recovery than giving a placebo for both males and
females, but overall it can appear better

I What treatment would you give to a patient coming into
your office? Apparent answer is “if know that patient is
male or female, don’t give drug, but if gender is unknown,
do!”. This answer is ridiculous!

I Correct answer to question will depend not only on
observed probabilities, but also on assumed causal model.
Diagrams below can have the same P(C, E , F ), but use of
combined or gender-specific tables depends on diagram

C CF F

EE

Recovery Recovery

GenderTreatment Treatment Blood
Pressure

use gender-specific table use combined
table

20 / 1


