Visualization of Navigation Patterns on a Web Site using Model Based Clustering

by I. Cadez, D. Heckerman, C. Meek, P. Smyth, S. White

Proceedings of KDD-2000

Chris Williams, School of Informatics University of Edinburgh

Overview

- Aim: Cluster sequences of user navigation patterns, so as to understand users of website—exploratory data analysis
- The data
- The output
- The model-mixtures of Markov models
- Fitting the model
- Application to msnbc.com
- Summary

The data

- Server log files have been converted into a set of sequences, one sequence for each
 user session
- Each sequence is an ordered list of discrete symbols
- Each symbol represents one of several possible categories of web pages requested by
 the user
- Example sequences

frontpage	news	travel	travel		
news	news	news	news	news	
weather					
news	health	health	business	business	business

The output

- WebCANVAS tool
- Overview screen giving all sequences in each cluster (scrollable)
- "Drill down" into a cluster by obtaining
 - marginal distribution for each cluster
 - distribution over first event
 - transition probabilities p(i, j)

The model

• Mixture of Markov models

$$p(\mathbf{x}|\theta) = \sum_{i=1}^{K} \pi_k p(\mathbf{x}|\theta_k)$$
$$p(\mathbf{x}|\theta_k) = p(x_i|\theta_k^I) \prod_{i=2}^{L} p(x_i|x_{i-1}, \theta_k^T)$$

- θ_k^I is probability of the initial symbol in the sequence (multinomial)
- θ_k^T is the transition probability from x_{i-1} to x_i ; each row is a multinomial
- Can also use a zeroth-order Markov model (unigram model) $p(\mathbf{x}|\theta_k) = \prod_{i=1}^{L} p(x_i|\theta_k^U)$

A small problem, and a solution

- Two or more clusters can be encoded by a single Markov model
- Example: start at a then choose between b and c, or start at d then choose between e and f
- This problem occurred frequently
- · Solved by allowing only one non-zero probability start state

Fitting the model

- Use EM (penalized maximum likelihood)
- Initialize π 's all equal
- Initialize *θ*'s by fitting a single Markov model, then perturbing these parameters in each component
- Do 20 restarts for each K, choose model with highest posterior probability
- Choose K using log likelihood of hold-out data

Application to msnbc.com

- 100,023 training sequences, 98,687 validation seq
- Found that EM scaled linearly with N (number of sequences) and K
- Best first-order model has 40 components
- Chose constrained model with 100 components (of course constrained model needs more components)

Summary

- Mixture of first-order Markov models
- WebCANVAS tool to visualize the clustered data and models
- Found that this clustering has revealed numerous interesting insights