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Nuts and bolts: Machine
learning algorithms in Java

ll the algorithms discussed in this book have been implemented and
made freely available on the World Wide Web (www.cs.waikato.
ac.nz/ml/weka) for you to experiment with. This will allow you to
learn more about how they work and what they do. The

implementations are part of a system called Weka, developed at the
University of Waikato in New Zealand. “Weka” stands for the Waikato
Environment for Knowledge Analysis. (Also, the weka, pronounced to
rhyme with Mecca,  is a flightless bird with an inquisitive nature found only
on the islands of New Zealand.) The system is written in Java, an object-
oriented programming language that is widely available for all major
computer platforms, and Weka has been tested under Linux, Windows, and
Macintosh operating systems. Java allows us to provide a uniform interface
to many different learning algorithms, along with methods for pre- and
postprocessing and for evaluating the result of learning schemes on any
given dataset. The interface is described in this chapter.

There are several different levels at which Weka can be used. First of all,
it provides implementations of state-of-the-art learning algorithms that you
can apply to your dataset from the command line. It also includes a variety
of tools for transforming datasets, like the algorithms for discretization
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discussed in Chapter 7. You can preprocess a dataset, feed it into a learning
scheme, and analyze the resulting classifier and its performance—all
without writing any program code at all. As an example to get you started,
we will explain how to transform a spreadsheet into a dataset with the right
format for this process, and how to build a decision tree from it.

Learning how to build decision trees is just the beginning: there are
many other algorithms to explore. The most important resource for
navigating through the software is the online documentation, which has
been automatically generated from the source code and concisely reflects
its structure. We will explain how to use this documentation and identify
Weka’s major building blocks, highlighting which parts contain supervised
learning methods, which contain tools for data preprocessing, and which
contain methods for other learning schemes. The online documentation is
very helpful even if you do no more than process datasets from the
command line, because it is the only complete list of available algorithms.
Weka is continually growing, and—being generated automatically from the
source code—the online documentation is always up to date. Moreover, it
becomes essential if you want to proceed to the next level and access the
library from your own Java programs, or to write and test learning schemes
of your own.

One way of using Weka is to apply a learning method to a dataset and
analyze its output to extract information about the data. Another is to
apply several learners and compare their performance in order to choose
one for prediction. The learning methods are called classifiers. They all
have the same command-line interface, and there is a set of generic
command-line options—as well as some scheme-specific ones. The
performance of all classifiers is measured by a common evaluation
module. We explain the command-line options and show how to interpret
the output of the evaluation procedure. We describe the output of decision
and model trees. We include a list of the major learning schemes and their
most important scheme-specific options. In addition, we show you how to
test the capabilities of a particular learning scheme, and how to obtain a
bias-variance decomposition of its performance on any given dataset.

Implementations of actual learning schemes are the most valuable
resource that Weka provides. But tools for preprocessing the data, called
filters, come a close second. Like classifiers, filters have a standardized
command-line interface, and there is a basic set of command-line options
that they all have in common. We will show how different filters can be
used, list the filter algorithms, and describe their scheme-specific options.

The main focus of Weka is on classifier and filter algorithms. However,
it also includes implementations of algorithms for learning association
rules and for clustering data for which no class value is specified. We
briefly discuss how to use these implementations, and point out their
limitations.
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In most data mining applications, the machine learning component is
just a small part of a far larger software system. If you intend to write a
data mining application, you will want to access the programs in Weka
from inside your own code. By doing so, you can solve the machine
learning subproblem of your application with a minimum of additional
programming. We show you how to do that by presenting an example of a
simple data mining application in Java. This will enable you to become
familiar with the basic data structures in Weka, representing instances,
classifiers, and filters.

If you intend to become an expert in machine learning algorithms (or,
indeed, if you already are one), you’ll probably want to implement your
own algorithms without having to address such mundane details as reading
the data from a file, implementing filtering algorithms, or providing code
to evaluate the results. If so, we have good news for you: Weka already
includes all this. In order to make full use of it, you must become
acquainted with the basic data structures. To help you reach this point, we
discuss these structures in more detail and explain example
implementations of a classifier and a filter.

8.1 Getting started
Suppose you have some data and you want to build a decision tree from it.
A common situation is for the data to be stored in a spreadsheet or
database. However, Weka expects it to be in ARFF format, introduced in
Section 2.4, because it is necessary to have type information about each
attribute which cannot be automatically deduced from the attribute values.
Before you can apply any algorithm to your data, is must be converted to
ARFF form. This can be done very easily. Recall that the bulk of an ARFF
file consists of a list of all the instances, with the attribute values for each
instance being separated by commas (Figure 2.2). Most spreadsheet and
database programs allow you to export your data into a file in comma-
separated format—as a list of records where the items are separated by
commas. Once this has been done, you need only load the file into a text
editor or a word processor; add the dataset’s name using the @relation tag,
the attribute information using @attribute, and a @data line; save the file as
raw text—and you’re done!

In the following example we assume that your data is stored in a
Microsoft Excel spreadsheet, and you’re using Microsoft Word for text
processing. Of course, the process of converting data into ARFF format is
very similar for other software packages. Figure 8.1a shows an Excel
spreadsheet containing the weather data from Section 1.2. It is easy to save
this data in comma-separated format. First, select the Save As… item from
the File pull-down menu. Then, in the ensuing dialog box, select CSV
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(a) (b)

(c)

(Comma Delimited) from the file type popup menu, enter a name for the
file, and click the Save button. (A message will warn you that this will only
save the active sheet: just ignore it by clicking OK.)

Figure 8.1  Weather data: (a) in
spreadsheet; (b) comma-separated;
(c) in ARFF format.
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Now load this file into Microsoft Word. Your screen will look like
Figure 8.1b. The rows of the original spreadsheet have been converted into
lines of text, and the elements are separated from each other by commas.
All you have to do is convert the first line, which holds the attribute names,
into the header structure that makes up the beginning of an ARFF file.

Figure 8.1c shows the result. The dataset’s name is introduced by a
@relation tag, and the names, types, and values of each attribute are
defined by @attribute tags. The data section of the ARFF file begins with a
@data tag. Once the structure of your dataset matches Figure 8.1c, you
should save it as a text file. Choose Save as… from the File menu, and
specify Text Only with Line Breaks as the file type by using the
corresponding popup menu. Enter a file name, and press the Save button.
We suggest that you rename the file to weather.arff  to indicate that it is in
ARFF format. Note that the classification schemes in Weka assume by
default that the class is the last attribute in the ARFF file, which fortunately
it is in this case. (We explain in Section 8.3 below how to override this
default.)

Now you can start analyzing this data using the algorithms provided. In
the following we assume that you have downloaded Weka to your system,
and that your Java environment knows where to find the library. (More
information on how to do this can be found at the Weka Web site.)

To see what the C4.5 decision tree learner described in Section 6.1 does
with this dataset, we use the J4.8 algorithm, which is Weka’s
implementation of this decision tree learner. (J4.8 actually implements a
later and slightly improved version called C4.5 Revision 8, which was the
last public version of this family of algorithms before C5.0, a commercial
implementation, was released.) Type

java weka.classifiers.j48.J48 -t weather.arff

at the command line. This incantation calls the Java virtual machine and
instructs it to execute the J48 algorithm from the j48 package—a
subpackage of classifiers, which is part of the overall weka package. Weka
is organized in “packages” that correspond to a directory hierarchy.
We’ll give more details of the package structure in the next section: in this
case, the subpackage name is j48  and the program to be executed from it is
called J48. The –t option informs the algorithm that the next argument is
the name of the training file.

After pressing Return, you’ll see the output shown in Figure 8.2. The
first part is a pruned decision tree in textual form. As you can see, the first
split is on the outlook attribute, and then, at the second level, the splits are
on humidity and windy, respectively. In the tree structure, a colon
introduces the class label that has been assigned to a particular leaf,
followed by the number of instances that reach that leaf, expressed as a
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J48 pruned tree
——————

outlook = sunny
|   humidity <= 75: yes (2.0)
|   humidity > 75: no (3.0)
outlook = overcast: yes (4.0)
outlook = rainy
|   windy = TRUE: no (2.0)
|   windy = FALSE: yes (3.0)

Number of Leaves  :      5
Size of the tree :      8

=== Error on training data ===

Correctly Classified Instances           14         100      %
Incorrectly Classified Instances          0           0      %
Mean absolute error                      0
Root mean squared error                  0
Total Number of Instances               14

=== Confusion Matrix ===

 a b   <-- classified as
 9 0 | a = yes
 0 5 | b = no

=== Stratified cross-validation ===

Correctly Classified Instances            9           64.2857 %
Incorrectly Classified Instances          5           35.7143 %
Mean absolute error                      0.3036
Root mean squared error                  0.4813
Total Number of Instances               14

=== Confusion Matrix ===

 a b   <-- classified as
 7 2 | a = yes
 3 2 | b = no

Figure 8.2  Output from the J4.8 decision tree learner.
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decimal number because of the way the algorithm uses fractional instances
to handle missing values. Below the tree structure, the number of leaves is
printed, then the total number of nodes in the tree (Size of the tree).

The second part of the output gives estimates of the tree’s predictive
performance, generated by Weka’s evaluation module. The first set of
measurements is derived from the training data. As discussed in Section
5.1, such measurements are highly optimistic and very likely to
overestimate the true predictive performance. However, it is still useful to
look at these results, for they generally represent an upper bound on the
model’s performance on fresh data. In this case, all fourteen training
instances have been classified correctly, and none were left unclassified. An
instance can be left unclassified if the learning scheme refrains from
assigning any class label to it, in which case the number of unclassified
instances will be reported in the output. For most learning schemes in
Weka, this never occurs.

In addition to the classification error, the evaluation module also outputs
measurements derived from the class probabilities assigned by the tree.
More specifically, it outputs the mean absolute error and the root mean-
squared error of the probability estimates. The root mean-squared error is
the square root of the average quadratic loss, discussed in Section 5.6. The
mean absolute error is calculated in a similar way by using the absolute
instead of the squared difference. In this example, both figures are 0
because the output probabilities for the tree are either 0 or 1, due to the
fact that all leaves are pure and all training instances are classified
correctly.

The summary of the results from the training data ends with a confusion
matrix, mentioned in Chapter 5 (Section 5.7), showing how many instances
of each class have been assigned to each class. In this case, only the
diagonal elements of the matrix are non-zero because all instances are
classified correctly.

The final section of the output presents results obtained using stratified
ten-fold cross-validation. The evaluation module automatically performs a
ten-fold cross-validation if no test file is given. As you can see, more than
30% of the instances (5 out of 14) have been misclassified in the cross-
validation. This indicates that the results obtained from the training data
are very optimistic compared with what might be obtained from an
independent test set from the same source. From the confusion matrix you
can observe that two instances of class yes have been assigned to class no,
and three of class no are assigned to class yes.

8.2 Javadoc and the class library
Before exploring other learning algorithms, it is useful to learn more about
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the structure of Weka. The most detailed and up-to-date information can
be found in the online documentation on the Weka Web site. This
documentation is generated directly from comments in the source code
using Sun’s Javadoc utility. To understand its structure, you need to know
how Java programs are organized.

Classes, instances, and packages

Every Java program is implemented as a class. In object-oriented
programming, a class is a collection of variables along with some methods
that operate on those variables. Together, they define the behavior of an
object belonging to the class. An object is simply an instantiation of the
class that has values assigned to all the class’s variables. In Java, an object is
also called an instance of the class. Unfortunately this conflicts with the
terminology used so far in this book, where the terms class and instance
have appeared in the quite different context of machine learning. From
now on, you will have to infer the intended meaning of these terms from
the context in which they appear. This is not difficult—though sometimes
we’ll use the word object instead of Java’s instance to make things clear.

In Weka, the implementation of a particular learning algorithm is
represented by a class. We have already met one, the J48 class described
above that builds a C4.5 decision tree. Each time the Java virtual machine
executes J48, it creates an instance of this class by allocating memory for
building and storing a decision tree classifier. The algorithm, the classifier
it builds, and a procedure for outputting the classifier, are all part of that
instantiation of the J48 class.

Larger programs are usually split into more than one class. The J48
class, for example, does not actually contain any code for building a
decision tree. It includes references to instances of other classes that do
most of the work. When there are a lot of classes—as in Weka—they can
become difficult to comprehend and navigate. Java allows classes to be
organized into packages. A package is simply a directory containing a
collection of related classes. The j48  package mentioned above contains
the classes that implement J4.8, our version of C4.5, and PART, which is the
name we use for the scheme for building rules from partial decision trees
that was explained near the end of Section 6.2 (page 181). Not
surprisingly, these two learning algorithms share a lot of functionality, and
most of the classes in this package are used by both algorithms, so it is
logical to put them in the same place. Because each package corresponds
to a directory, packages are organized in a hierarchy. As already
mentioned, the j48  package is a subpackage of the classifiers package,
which is itself a subpackage of the overall weka package.

When you consult the online documentation generated by Javadoc from
your Web browser, the first thing you see is a list of all the packages in
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(a)

Figure 8.3 Using Javadoc: (a) the front
page; (b) the weka.core package.

(b)

Weka (Figure 8.3a). In the following we discuss what each one contains.
On the Web page they are listed in alphabetical order; here we introduce
them in order of importance.

The weka.core package

The core package is central to the Weka system. It contains classes that are
accessed from almost every other class. You can find out what they are by
clicking on the hyperlink underlying weka.core, which brings up Figure
8.3b.
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The Web page in Figure 8.3b is divided into two parts: the Interface
Index and the Class Index. The latter is a list of all classes contained within
the package, while the former lists all the interfaces it provides. An
interface  is very similar to a class, the only difference being that it doesn’t
actually do anything by itself—it is merely a list of methods without actual
implementations. Other classes can declare that they “implement” a
particular interface, and then provide code for its methods. For example,
the OptionHandler interface defines those methods that are implemented by
all classes that can process command-line options—including all classifiers.

The key classes in the core package are called Attribute, Instance, and
Instances. An object of class Attribute represents an attribute. It contains
the attribute’s name, its type and, in the case of a nominal attribute, its
possible values. An object of class Instance contains the attribute values of
a particular instance; and an object of class Instances holds an ordered set
of instances, in other words, a dataset. By clicking on the hyperlinks
underlying the classes, you can find out more about them. However, you
need not know the details just to use Weka from the command line. We will
return to these classes in Section 8.4 when we discuss how to access the
machine learning routines from other Java code.

Clicking on the All Packages hyperlink in the upper left corner of any
documentation page brings you back to the listing of all the packages in
Weka (Figure 8.3a).

The weka.classifiers package

The classifiers package contains implementations of most of the algorithms
for classification and numeric prediction that have been discussed in this
book. (Numeric prediction is included in classifiers: it is interpreted as
prediction of a continuous class.) The most important class in this package
is Classifier, which defines the general structure of any scheme for
classification or numeric prediction. It contains two methods,
buildClassifier() and classifyInstance(), which all of these learning
algorithms have to implement. In the jargon of object-oriented
programming, the learning algorithms are represented by subclasses of
Classifier, and therefore automatically inherit these two methods. Every
scheme redefines them according to how it builds a classifier and how it
classifies instances. This gives a uniform interface for building and using
classifiers from other Java code. Hence, for example, the same evaluation
module can be used to evaluate the performance of any classifier in Weka.

Another important class is DistributionClassifier. This subclass of
Classifier defines the method distributionForInstance(), which returns a
probability distribution for a given instance. Any classifier that can
calculate class probabilities is a subclass of DistributionClassifier and
implements this method.
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Figure 8.4  A class of the weka.classifiers package.
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To see an example, click on DecisionStump, which is a class for building
a simple one-level binary decision tree (with an extra branch for missing
values). Its documentation page, shown in Figure 8.4, begins with the fully
qualified name of this class: weka.classifiers.DecisionStump. You have to
use this rather lengthy expression if you want to build a decision stump
from the command line. The page then displays a tree structure showing
the relevant part of the class hierarchy. As you can see, DecisionStump is a
subclass of DistributionClassifier, and therefore produces class
probabilities. DistributionClassifier, in turn, is a subclass of Classifier,
which is itself a subclass of Object. The Object class is the most general one
in Java: all classes are automatically subclasses of it.

After some generic information about the class, its author, and its
version, Figure 8.4 gives an index of the constructors and methods of this
class. A constructor is a special kind of method that is called whenever an
object of that class is created, usually initializing the variables that
collectively define its state. The index of methods lists the name of each
one, the type of parameters it takes, and a short description of its
functionality. Beneath those indexes, the Web page gives more details
about the constructors and methods. We return to those details later.

As you can see, DecisionStump implements all methods required by both
a Classifier and a DistributionClassifier. In addition, it contains
toString() and main() methods. The former returns a textual description
of the classifier, used whenever it is printed on the screen. The latter is
called every time you ask for a decision stump from the command line, in
other words, every time you enter a command beginning with

java weka.classifiers.DecisionStump

The presence of a main() method in a class indicates that it can be run
from the command line, and all learning methods and filter algorithms
implement it.

Other packages

Several other packages listed in Figure 8.3a are worth mentioning here:
weka.classifiers.j48, weka.classifiers.m5 , weka.associations, weka.clusterers,
weka.estimators, weka.filters, and weka.attributeSelection. The
weka.classifiers.j48 package contains the classes implementing J4.8 and the
PART rule learner. They have been placed in a separate package (and
hence in a separate directory) to avoid bloating the classifiers package. The
weka.classifiers.m5  package contains classes implementing the model tree
algorithm of Section 6.5, which is called M5′.

In Chapter 4 (Section 4.5) we discussed an algorithm for mining
association rules, called APRIORI. The weka.associations package contains
two classes, ItemSet and Apriori, which  together implement this algorithm.   



8.3    PROCESSING DATASETS USING THE MACHINE LEARNING PROGRAMS       2 7 7 

They have been placed in a separate package because association rules are
fundamentally different from classifiers. The weka.clusterers package
contains an implementation of two methods for unsupervised learning:
COBWEB and the EM algorithm (Section 6.6). The weka.estimators
package contains subclasses of a generic Estimator class, which computes
different types of probability distribution. These subclasses are used by the
Naive Bayes algorithm.

Along with actual learning schemes, tools for preprocessing a dataset,
which we call filters, are an important component of Weka. In weka.filters,
the Filter class is the analog of the Classifier class described above. It
defines the general structure of all classes containing filter
algorithms—they are all implemented as subclasses of Filter. Like
classifiers, filters can be used from the command line; we will see later how
this is done. It is easy to identify classes that implement filter algorithms:
their names end in Filter.

Attribute selection is an important technique for reducing the
dimensionality of a dataset. The weka.attributeSelection package contains
several classes for doing this. These classes are used by the
AttributeSelectionFilter from weka.filters, but they can also be used
separately.

Indexes

As mentioned above, all classes are automatically subclasses of Object. This
makes it possible to construct a tree corresponding to the hierarchy of all
classes in Weka. You can examine this tree by selecting the Class Hierarchy
hyperlink from the top of any page of the online documentation. This
shows very concisely which classes are subclasses or superclasses of a
particular class—for example, which classes inherit from Classifier.

The online documentation contains an index of all publicly accessible
variables (called fields) and methods in Weka—in other words, all fields
and methods that you can access from your own Java code. To view it,
click on the Index hyperlink located at the top of every documentation
page.

8.3 Processing datasets using the machine
learning programs
We have seen how to use the online documentation to find out which
learning methods and other tools are provided in the Weka system. Now we
show how to use these algorithms from the command line, and then discuss
them in more detail.
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Pruned training model tree:

MMAX <= 14000 : LM1 (141/4.18%)
MMAX >  14000 : LM2 (68/51.8%)

Models at the leaves (smoothed):

  LM1:  class = 4.15
                - 2.05vendor=honeywell,ipl,ibm,cdc,ncr,basf,
                     gould,siemens,nas,adviser,sperry,amdahl
                + 5.43vendor=adviser,sperry,amdahl
                - 5.78vendor=amdahl + 0.00638MYCT
                + 0.00158MMIN + 0.00345MMAX
                + 0.552CACH + 1.14CHMIN + 0.0945CHMAX
  LM2:  class = -113
                - 56.1vendor=honeywell,ipl,ibm,cdc,ncr,basf,
                     gould,siemens,nas,adviser,sperry,amdahl
                + 10.2vendor=adviser,sperry,amdahl
                - 10.9vendor=amdahl
                + 0.012MYCT + 0.0145MMIN + 0.0089MMAX
                + 0.808CACH + 1.29CHMAX

=== Error on training data ===

Correlation coefficient                  0.9853
Mean absolute error                     13.4072
Root mean squared error                 26.3977
Relative absolute error                 15.3431 %
Root relative squared error             17.0985 %
Total Number of Instances              209

=== Cross-validation ===

Correlation coefficient                  0.9767
Mean absolute error                     13.1239
Root mean squared error                 33.4455
Relative absolute error                 14.9884 %
Root relative squared error             21.6147 %
Total Number of Instances              209

Figure 8.5  Output from the M5′ program for numeric prediction.
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Using M5´

Section 8.1 explained how to interpret the output of a decision tree learner
and showed the performance figures that are automatically generated by
the evaluation module. The interpretation of these is the same for all
models that predict a categorical class. However, when evaluating models
for numeric prediction, Weka produces a different set of performance
measures.

As an example, suppose you have a copy of the CPU performance
dataset from Table 1.5 of Chapter 1 named cpu.arff in the current
directory. Figure 8.5 shows the output obtained if you run the model tree
inducer M5Ì on it by typing

java weka.classifiers.m5.M5Prime -t cpu.arff

and pressing Return. The structure of the pruned model tree is surprisingly
simple. It is a decision stump, a binary 1-level decision tree, with a split on
the MMAX attribute. Attached to that stump are two linear models, one for
each leaf. Both involve one nominal attribute, called vendor. The
expression vendor=adviser, sperry,amdahl is interpreted as follows: if
vendor is either adviser, sperry, or amdahl, then substitute 1, otherwise 0.

The description of the model tree is followed by several figures that
measure its performance. As with decision tree output, the first set is
derived from the training data and the second uses tenfold cross-validation
(this time not stratified, of course, because that doesn’t make sense for
numeric prediction). The meaning of the different measures is explained
in Section 5.8.

Generic options

In the examples above, the –t option was used to communicate the name of
the training file to the learning algorithm. There are several other options
that can be used with any learning scheme, and also scheme-specific ones
that apply only to particular schemes. If you invoke a scheme without any
command-line options at all, it displays all options that can be used. First
the general options are listed, then the scheme-specific ones. Try, for
example,

java weka.classifiers.j48.J48

You’ll see a listing of the options common to all learning schemes, shown
in Table 8.1, followed by a list of those that just apply to J48, shown in
Table 8.2. We will explain the generic options and then briefly review the
scheme-specific ones.
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Table 8.1 Generic options for learning schemes in Weka.

option function

-t <training file> Specify training file

-T <test file> Specify test file. If none, a cross-validation is
performed on the training data

-c <class index> Specify index of class attribute

-x <number of folds> Specify number of folds for cross-validation

-s <random number seed> Specify random number seed for cross-validation

-m <cost matrix file> Specify file containing cost matrix

-v Output no statistics for training data

-l <input file> Specify input file for model

-d <output file> Specify output file for model

-o Output statistics only, not the classifier

-I Output information retrieval statistics for two-
class problems

-k Output information-theoretic statistics

-p Only output predictions for test instances

-r Only output cumulative margin distribution

The options in Table 8.1 determine which data is used for training and
testing, how the classifier is evaluated, and what kind of statistics are
displayed. You might want to use an independent test set instead of
performing a cross-validation on the training data to evaluate a learning
scheme. The –T option allows just that: if you provide the name of a file,
the data in it is used to derive performance statistics, instead of cross-
validation. Sometimes the class is not the last attribute in an ARFF file: you
can declare that another one is the class using –c. This option requires you
to specify the position of the desired attribute in the file, 1 for the first
attribute, 2 for the second, and so on. When tenfold cross-validation is
performed (the default if a test file is not provided), the data is randomly
shuffled first. If you want to repeat the cross-validation several times, each
time reshuffling the data in a different way, you can set the random
number seed with –s (default value 1). With a large dataset you may want
to reduce the number of folds for the cross-validation from the default
value of 10 using –x.

Weka also implements cost-sensitive classification. If you provide the
name of a file containing a cost matrix using the –m option, the dataset will
be reweighted (or resampled, depending on the learning scheme)
according to the information in this file. Here is a cost matrix for the
weather data above:
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0 1 10 % If true class yes and prediction no, penalty is 10

1 0 1  % If true class no and prediction yes, penalty is 1

Each line must contain three numbers: the index of the true class, the index
of the incorrectly assigned class, and the penalty, which is the amount by
which that particular error will be weighted (the penalty must be a positive
number). Not all combinations of actual and predicted classes need be
listed: the default penalty is 1. (In all Weka input files, comments
introduced by % can be appended to the end of any line.)

J48 pruned tree

——————

: yes (14.0/0.74)

Number of Rules  :      1

Size of the tree :      1

=== Confusion Matrix ===

 a b   <-- classified as

 9 0 | a = yes

 5 0 | b = no

=== Stratified cross-validation ===

Correctly Classified Instances         9              64.2857 %

Incorrectly Classified Instances       5              35.7143 %

Correctly Classified With Cost        90              94.7368 %

Incorrectly Classified With Cost       5               5.2632 %

Mean absolute error                   0.3751

Root mean squared error               0.5714

Total Number of Instances            14

Total Number With Cost               95

=== Confusion Matrix ===

 a b   <-- classified as

 9 0 | a = yes

 5 0 | b = no

Figure 8.6  Output from J4.8 with cost-sensitive classification.
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To illustrate cost-sensitive classification, let’s apply J4.8 to the weather
data, with a heavy penalty if the learning scheme predicts no when the true
class is yes. Save the cost matrix above in a file called costs in the same
directory as weather.arff . Assuming that you want the cross-validation
performance only, not the error on the training data, enter

java weka.classifiers.j48.J48 -t weather.arff -m costs -v

The output, shown in Figure 8.6, is quite different from that given earlier
in Figure 8.2. To begin with, the decision tree has been reduced to its root!
Also, four new performance measures are included, each one ending in
With Cost. These are calculated by weighting the instances according to the
weights given in the cost matrix. As you can see, the learner has decided
that it’s best to always predict yes in this situation—which is not surprising,
given the heavy penalty for erroneously predicting no.

Returning to Table 8.1, it is also possible to save and load models. If
you provide the name of an output file using –d, Weka will save the
classifier generated from the training data into this file. If you want to
evaluate the same classifier on a new batch of test instances, you can load it
back using –l instead of rebuilding it. If the classifier can be updated
incrementally (and you can determine this by checking whether it
implements the UpdateableClassifier interface), you can provide both a
training file and an input file, and Weka will load the classifier and update
it with the given training instances.

If you only wish to assess the performance of a learning scheme and are
not interested in the model itself, use –o to suppress output of the model.
To see the information-retrieval performance measures of precision, recall,
and the F-measure that were introduced in Section 5.7, use –i (note that
these can only be calculated for two-class datasets). Information-theoretic
measures computed from the probabilities derived by a learning

Table 8.2 Scheme-specific options for the J4.8 decision tree learner.

option function

-U Use unpruned tree

-C <pruning confidence> Specify confidence threshold for pruning

-M <number of instances> Specify minimum number of instances in a leaf

-R Use reduced-error pruning

-N <number of folds> Specify number of folds for reduced error pruning.
One fold is used as pruning set

-S Use binary splits only

Don’t perform subtree raising
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scheme—such as the informational loss function discussed in Section
5.6—can be obtained with –k.

Users often want to know which class values the learning scheme
actually predicts for each test instance. The –p option, which only applies if
you provide a test file, prints the number of each test instance, its class, the
confidence of the scheme’s prediction, and the predicted class value.
Finally, you can output the cumulative margin distribution for the training
data. This allows you to investigate how the distribution of the margin
measure from Section 7.4 (in the subsection Boosting) changes with the
number of iterations performed when boosting a learning scheme.

Scheme-specific options

Table 8.2 shows the options specific to J4.8. You can force the algorithm
to use the unpruned tree instead of the pruned one. You can suppress
subtree raising, which results in a more efficient algorithm. You can set the
confidence threshold for the pruning procedure, and the minimum
number of instances permissible at any leaf—both parameters were
discussed in Section 6.1 (p. 169). In addition to C4.5’s standard pruning
procedure, reduced-error pruning (Section 6.2) can be performed, which
prunes the decision tree to optimize performance on a holdout set. The –N
option governs how large this set is: the dataset is divided equally into that
number of parts, and the last is used as the holdout set (default value 3).
Finally, to build a binary tree instead of one with multiway branches for
nominal attributes, use –B.

Classifiers

J4.8 is just one of many practical learning schemes that you can apply to
your dataset. Table 8.3 lists them all, giving the name of the class
implementing the scheme along with its most important scheme-specific
options and their effects. It also indicates whether the scheme can handle
weighted instances (W column), whether it can output a class distribution
for datasets with a categorical class (D column), and whether it can be
updated incrementally (I column). Table 8.3 omits a few other schemes
designed mainly for pedagogical purposes that implement some of the
basic methods covered in Chapter 4—a rudimentary implementation of
Naive Bayes, a divide-and-conquer decision tree algorithm (ID3), a
covering algorithm for generating rules (PRISM), and a nearest-neighbor
instance-based learner (IB1); we will say something about these in Section
8.5 when we explain how to write new machine learning schemes. Of
course, Weka is a growing system: other learning algorithms will be added
in due course, and the online documentation must be consulted for a
definitive list.
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The most primitive of the schemes in Table 8.3 is called ZeroR: it simply
predicts the majority class in the training data if the class is categorical and
the average class value if it is numeric. Although it makes little sense to use
this scheme for prediction, it can be useful for determining a baseline
performance as a benchmark for other learning schemes. (Sometimes
other schemes actually perform worse than ZeroR: this indicates serious
overfitting.)

Ascending the complexity ladder, the next learning scheme is OneR,
discussed in Section 4.1, which produces simple rules based on one
attribute only. It takes a single parameter: the minimum number of
instances that must be covered by each rule that is generated (default value
6).

NaiveBayes implements the probabilistic Naive Bayesian classifier from
Section 4.2. By default it uses the normal distribution to model numeric
attributes; however, the –K option instructs it to use kernel density
estimators instead. This can improve performance if the normality
assumption is grossly incorrect.

The next scheme in Table 8.3, DecisionTable, produces a decision table
using the wrapper method of Section 7.1 to find a good subset of attributes
for inclusion in the table. This is done using a best-first search. The
number of non-improving attribute subsets that are investigated before the
search terminates can be controlled using –S (default value 5). The number
of cross-validation folds performed by the wrapper can be changed using
–X (default: leave-one-out). Usually, a decision table assigns the majority
class from the training data to a test instance if it does not match any entry
in the table. However, if you specify the –I option, the nearest match will
be used instead. This often improves performance significantly.

IBk is an implementation of the k-nearest-neighbors classifier that
employs the distance metric discussed in Section 4.7. By default it uses just
one nearest neighbor (k = 1), but the number can be specified manually
with –K or determined automatically using leave-one-out cross-validation.
The –X option instructs IBk to use cross-validation to determine the best
value of k between 1 and the number given by –K. If more than one
neighbor is selected, the predictions of the neighbors can be weighted
according to their distance to the test instance, and two different formulas
are implemented for deriving the weight from the distance (–D and –F). The
time taken to classify a test instance with a nearest-neighbor classifier
increases linearly with the number of training instances. Consequently it is
sometimes necessary to restrict the number of training instances that are
kept in the classifier, which is done by setting the window size option.

We have already discussed the options for J4.8; those for PART, which
forms rules from pruned partial decision trees built using C4.5’s heuristics
as described near the end of Section 6.2 (page 181), are a subset of these.
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Just as reduced-error pruning can reduce the size of a J4.8 decision tree, it
can also reduce the number of rules produced by PART—with the side
effect of decreasing run time because complexity depends on the number
of rules that are generated. However, reduced-error pruning often reduces
the accuracy of the resulting decision trees and rules because it reduces the
amount of data that can be used for training. With large enough datasets,
this disadvantage vanishes.

In Section 6.3 we introduced support vector machines. The SMO class
implements the sequential minimal optimization algorithm, which learns
this type of classifier. Despite being one of the fastest methods for learning
support vector machines, sequential minimal optimization is often slow to
converge to a solution—particularly when the data is not linearly separable
in the space spanned by the nonlinear mapping. Because of noise, this
often happens. Both run time and accuracy depend critically on the values
that are given to two parameters: the upper bound on the coefficients’
values in the equation for the hyperplane (–C), and the degree of the
polynomials in the non-linear mapping (–E). Both are set to 1 by default.
The best settings for a particular dataset can be found only by
experimentation.

The next three learning schemes in Table 8.3 are for numeric
prediction. The simplest is linear regression, whose only parameter controls
how attributes to be included in the linear function are selected. By default,
the heuristic employed by the model tree inducer M5′ is used, whose run
time is linear in the number of attributes. However, it is possible to suppress
all attribute selection by setting –S to 1, and to use greedy forward
selection, whose run time is quadratic in the number of attributes, by
setting –S to 2.

The class that implements M5′ has already been described in the
example on page 279. It implements the algorithm explained in Section
6.5 except that a simpler method is used to deal with missing values: they
are replaced by the global mean or mode of the training data before the
model tree is built. Several different forms of model output are provided,
controlled by the –O option: a model tree (–O m), a regression tree
without linear models at the leaves (–O r), and a simple linear regression
(–O l). The automatic smoothing procedure described in Section 6.5 can
be disabled using –U. The amount of pruning that this algorithm performs
can be controlled by setting the pruning factor to a value between 0 and
10. Finally, the verbosity of the output can be set to a value from 0 to 3.

Locally weighted regression, the second scheme for numeric prediction
described in Section 6.5, is implemented by the LWR class. Its performance
depends critically on the correct choice of kernel width, which is
determined by calculating the distance of the test instance to its kth nearest
neighbor. The value of k can be specified using –K. Another factor that
influences  performance  is  the  shape  of  the kernel:  choices  are 0  for a
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Table 8.4 The meta-learning schemes in Weka.

scheme option function

weka.classifiers.Bagging -I <> Specify number of iterations

-W <> Specify base learner

-S <> Specify random number seed

weka.classifiers.AdaBoostM1 -I <> Specify number of iterations

-P <> Specify weight mass to be used

-W <> Specify base learner

-Q Use resampling

-S <> Specify random number seed

weka.classifiers.LogitBoost -I <> Specify number of iterations

-P <> Specify weight mass to be used

-W <> Specify base learner

weka.classifiers. -W <> Specify base learner

  MultiClassClassifier

weka.classifiers. -W <> Specify base learner

  CVParameterSelection -P <> Specify option to be optimized

-X <> Specify number of cross-validation
folds

-S <> Specify random number seed

weka.classifiers. -B <> Specify level-0 learner and options

  Stacking -M <> Specify level-1 learner and options

-X <> Specify number of cross-validation
folds

-S <> Specify random number seed

linear kernel (the default), 1 for an inverse one, and 2 for the classic
Gaussian kernel.

The final scheme in Table 8.3, DecisionStump, builds binary decision
stumps—one-level decision trees—for datasets with either a categorical or a
numeric class. It copes with missing values by extending a third branch
from the stump, in other words, by treating missing as a separate attribute
value. It is designed for use with the boosting methods discussed later in
this section.

Meta-learning schemes

Chapter 7 described methods for enhancing the performance and
extending the capabilities of learning schemes. We call these meta-learning
schemes because they incorporate other learners. Like ordinary learning



2 8 8         CHAPTER EIGHT | MACHINE LEARNING ALGORITHMS IN JAVA

schemes, meta learners belong to the classifiers package: they are
summarized in Table 8.4.

The first is an implementation of the bagging procedure discussed in
Section 7.4. You can specify the number of bagging iterations to be
performed (default value 10), and the random number seed for
resampling. The name of the learning scheme to be bagged is declared
using the –W option. Here is the beginning of a command line for bagging
unpruned J4.8 decision trees:

java weka.classifiers.bagging -W jaws.classifiers.j48.J48...-- -U

There are two lists of options, those intended for bagging and those for the
base learner itself, and a double minus sign (––) is used to separate the lists.
Thus the –U in the above command line is directed to the J48 program,
where it will cause the use of unpruned trees (see Table 8.2). This
convention avoids the problem of conflict between option letters for the
meta learner and those for the base learner.

AdaBoost.M1, also discussed in Section 7.4, is handled in the same way as
bagging. However, there are two additional options. First, if –Q is used,
boosting with resampling will be performed instead of boosting with
reweighting. Second, the –P option can be used to accelerate the learning
process: in each iteration only the percentage of the weight mass specified
by –P is passed to the base learner, instances being sorted according to their
weight. This means that the base learner has to process fewer instances
because often most of the weight is concentrated on a fairly small subset,
and experience shows that the consequent reduction in classification
accuracy is usually negligible.

Another boosting procedure is implemented by LogitBoost. A detailed
discussion of this method is beyond the scope of this book; suffice to say
that it is based on the concept of additive logistic regression (Friedman et
al. 1998). In contrast to AdaBoost.M1, LogitBoost can successfully boost
very simple learning schemes, (like DecisionStump, that was introduced
above), even in multiclass  situations.  From a user’s point of view, it differs
from AdaBoost.M1 in an important way because it boosts schemes for
numeric prediction in order to form a combined classifier that predicts a
categorical class.

Weka also includes an implementation of a meta learner which performs
stacking, as explained in Chapter 7 (Section 7.4). In stacking, the result of
a set of different level-0 learners is combined by a level-1 learner. Each
level-0 learner must be specified using –B, followed by any relevant
options—and the entire specification of the level-0 learner, including the
options, must be enclosed in double quotes. The level-1 learner is specified
in the same way, using –M. Here is an example:

java weka.classifiers.Stacking -B “weka.classifiers.j48.J48 -U“
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   -B “weka.classifiers.IBk -K 5“ -M “weka.classifiers.j48.J48“ ...

By default, tenfold cross-validation is used; this can be changed with the –X
option.

Some learning schemes can only be used in two-class situations—for
example, the SMO class described above. To apply such schemes to
multiclass datasets, the problem must be transformed into several two-class
ones and the results combined. MultiClassClassifier does exactly that: it
takes a base learner that can output a class distribution or a numeric class,
and applies it to a multiclass learning problem using the simple one-per-
class coding introduced in Section 4.6 (p. 114).

Often, the best performance on a particular dataset can only be achieved
by tedious parameter tuning. Weka includes a meta learner that performs
optimization automatically using cross-validation. The –W option of
CVParameterSelection takes the name of a base learner, and the –P option
specifies one parameter in the format

 “<option name> <starting value> <last value> <number of steps>“

An example is:

java...CVParameterSelection -W...OneR -P “B 1 10 10“ -t
   weather.arff

which evaluates integer values between 1 and 10 for the B parameter of 1R.
Multiple parameters can be specified using several –P options.

CVParameterSelection causes the space of all possible combinations of
the given parameters to be searched exhaustively. The parameter set with
the best cross-validation performance is chosen, and this is used to build a
classifier from the full training set. The –X option allows you to specify the
number of folds (default 10).

Suppose you are unsure of the capabilities of a particular classifier—for
example,   you   might  want  to   know   whether  it  can   handle  weighted

@relation weather-weka.filters.AttributeFilter-R1_2

@attribute humidity real

@attribute windy {TRUE,FALSE}

@attribute play {yes,no}

@data

85,FALSE,no

90,TRUE,no

...

Figure 8.7  Effect of AttributeFilter on the weather dataset.
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Table 8.5 The filter algorithms in Weka.

filter option function

weka.filters.AddFilter -C <> Specify index of new attribute

-L <> Specify labels for nominal attribute

-N <> Specify name of new attribute

weka.filters. -E <> Specify evaluation class

  AttributeSelectionFilter -S <> Specify search class

-T <> Set threshold by which to discard
attributes

weka.filters.AttributeFilter -R <> Specify attributes to be deleted

-V Invert matching sense

weka.filters.DiscretizeFilter -B <> Specify number of bins

-O Optimize number of bins

-R <> Specify attributes to be discretized

-V Invert matching sense

-D Output binary attributes

weka.filter.MakeIndicatorFilter -C <> Specify attribute index

-V <> Specify value index

-N Output nominal attribute

weka.filter.MergeTwoValuesFilter -C <> Specify attribute index

-F <> Specify first value index

-S <> Specify second value index

instances. The weka.classifiers.CheckClassifier tool prints a summary of
any classifier’s properties. For example,

java weka.classifiers.CheckClassifier -W weka.classifiers.IBk

prints a summary of the properties of the IBk class discussed above.
In Section 7.4 we discussed the bias-variance decomposition of a

learning algorithm. Weka includes an algorithm that estimates the bias and
variance of a particular learning scheme with respect to a given dataset.
BVDecompose takes the name of a learning scheme and a training file and
performs a bias-variance decomposition. It provides options for setting the
index of the class attribute, the number of iterations to be performed, and
the random number seed. The more iterations that are performed, the
better the estimate.
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Table 8.5 The filter algorithms in Weka. (continued)

filter option function

weka.filters. -N Output nominal attributes
  NominalToBinaryFilter

weka.filters.  
  ReplaceMissingValuesFilter

weka.filters.InstanceFilter -C <> Specify attribute index

-S <> Specify numeric value

-L <> Specify nominal values

-V Invert matching sense

weka.filters. -C <> Specify attribute index

  SwapAttributeValuesFilter -F <> Specify first value index

-S <> Specify second value index

weka.filters. -R <> Specify attributes to be transformed

  NumericTransformFilter -V Invert matching sense

-C <> Specify Java class

-M <> Specify transformation method

weka.filters. -R <> Specify range of instances to be split

  SplitDatasetFilter -V Invert matching sense

-N <> Specify number of folds

-F <> Specify fold to be returned

-S <> Specify random number seed

Filters

Having discussed the learning schemes in the classifiers package, we now
turn to the next important package for command-line use, filters. We begin
by examining a simple filter that can be used to delete specified attributes
from a dataset, in other words, to perform manual attribute selection. The
following command line

java weka.filters.AttributeFilter -R 1,2 -i weather.arff

yields the output in Figure 8.7. As you can see, attributes 1 and 2, namely
outlook and temperature, have been deleted. Note that no spaces are
allowed in the list of attribute indices. The resulting dataset can be placed
in the file weather.new.arff by typing:

java...AttributeFilter -R 1,2 -i weather.arff -o weather.new.arff

All filters in Weka are used in the same way. They take an input file
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specified using the –i option and an optional output file specified with –o.
A class index can be specified using –c. Filters read the ARFF file,
transform it, and write it out. (If files are not specified, they read from
standard input and write to standard output, so that they can be used as a
“pipe” in Unix systems.) All filter algorithms provide a list of available
options in response to –h, as in

java weka.filters.AttributeFilter -h

Table 8.5 lists the filters implemented in Weka, along with their principal
options.

The first, AddFilter, inserts an attribute at the given position. For all
instances in the dataset, the new attribute’s value is declared to be missing.
If a list of comma-separated nominal values is given using the –L option,
the new attribute will be a nominal one, otherwise it will be numeric. The
attribute’s name can be set with –N.

AttributeSelectionFilter allows you to select a set of attributes using
different methods: since it is rather complex we will leave it to last.

AttributeFilter has already been used above. However, there is a
further option: if –V is used the matching set is inverted—that is, only
attributes not  included in the –R specification are deleted.

An important filter for practical applications is DiscretizeFilter. It
contains an unsupervised and a supervised discretization method, both
discussed in Section 7.2. The former implements equal-width binning, and
the number of bins can be set manually using –B. However, if –O is present,
the number of bins will be chosen automatically using a cross-validation
procedure that maximizes the estimated likelihood of the data. In that case,
–B gives an upper bound to the possible number of bins. If the index of a
class attribute is specified using –c, supervised discretization will be
performed using the MDL method of Fayyad and Irani (1993). Usually,
discretization loses the ordering implied by the original numeric attribute
when it is transformed into a nominal one. However, this information is
preserved if the discretized attribute with k values is transformed into k -1
binary attributes. The –D option does this automatically by producing one
binary attribute for each split point (described in Section 7.2 [p. 239]).

MakeIndicatorFilter is used to convert a nominal attribute into a binary
indicator attribute and can be used to transform a multiclass dataset into
several two-class ones. The filter substitutes a binary attribute for the
chosen nominal one, setting the corresponding value for each instance to 1
if a particular original value was present and to 0 otherwise. Both the
attribute to be transformed and the original nominal value are set by the
user. By default the new attribute is declared to be numeric, but if –N is
given it will be nominal.

Suppose you want to merge two values of a nominal attribute into a
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single category. This is done by MergeAttributeValuesFilter. The name of
the new value is a concatenation of the two original ones, and every
occurrence of either of the original values is replaced by the new one. The
index of the new value is the smaller of the original indexes.

Some learning schemes, like support vector machines, can handle only
binary attributes. The advantage of binary attributes is that they can be
treated as either nominal or numeric. NominalToBinaryFilter transforms all
multivalued nominal attributes in a dataset into binary ones, replacing each
attribute with k values by k –1 binary attributes. If a class is specified using
the –c option, it is left untouched. The transformation used for the other
attributes depends on whether the class is numeric. If the class is numeric,
the M5′ transformation method is employed for each attribute; otherwise a
simple one-per-value encoding is used. If the –N option is used, all new
attributes will be nominal, otherwise they will be numeric.

One way of dealing with missing values is to replace them globally
before applying a learning scheme. ReplaceMissingValuesFilter substitutes
the mean, for numeric attributes, or the mode, for nominal ones, for each
occurrence of a missing value.

To remove from a dataset all instances that have certain values for
nominal attributes, or numeric values above or below a certain threshold,
use InstanceFilter. By default all instances are deleted that exhibit one of
a given set of nominal attribute values (if the specified attribute is
nominal), or a numeric value below a given threshold (if it is numeric).
However, the matching criterion can be inverted using –V.

The SwapAttributeValuesFilter is a simple one: all it does is swap the
positions of two values of a nominal attribute. Of course, this could also be
accomplished by editing the ARFF file in a word processor. The order of
attribute values is entirely cosmetic: it does not affect machine learning at
all. If the selected attribute is the class, changing the order affects the
layout of the confusion matrix.

In some applications it is necessary to transform a numeric attribute
before a learning scheme is applied—for example, replacing each value
with its square root. This is done using NumericTransformFilter, which
transforms all of the selected numeric attributes using a given function.
The transformation can be any Java function that takes a double as its
argument and returns another double, for example, sqrt() in
java.lang.Math. The name of the class that implements the function (which
must be a fully qualified name) is set using –C, and the name of the
transformation method is set using –M: thus to take the square root use:

java weka.filters.NumericTransformFilter -C java.lang.Math -M sqrt...

Weka also includes a filter with which you can generate subsets of a
dataset, SplitDatasetFilter. You can either supply a range of instances to
be selected using the –R option, or generate a random subsample whose
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size is determined by the –N option. The dataset is split into the given
number of folds, and one of them (indicated by –F) is returned. If a
random number seed is provided (with –S), the dataset will be shuffled
before the subset is extracted. Moreover, if a class attribute is set using –c
the dataset will be stratified, so that the class distribution in the subsample is
approximately the same as in the full dataset.

It is often necessary to apply a filter algorithm to a training dataset and
then, using settings derived from the training data, apply the same filter to
a test file. Consider a filter that discretizes numeric attributes. If the
discretization method is supervised—that is, if it uses the class values to
derive good intervals for the discretization—the results will be biased if it is
applied directly to the test data. It is the discretization intervals derived
from the training data that must be applied to the test data. More generally,
the filter algorithm must optimize its internal settings according to the
training data and apply these same settings to the test data. This can be
done in a uniform way with all filters by adding –b as a command-line
option and providing the name of input and output files for the test data
using –r and –s respectively. Then the filter class will derive its internal
settings using the training data provided by –i and use these settings to
transform the test data.

Finally, we return to AttributeSelectionFilter. This lets you select a set
of attributes using attribute selection classes in the
weka.attributeSelection package. The –c option sets the class index for
supervised attribute selection. With –E you provide the name of an
evaluation class from weka.attributeSelection that determines how the
filter evaluates attributes, or sets of attributes; in addition you may need to
use –S to specify a search technique. Each feature evaluator, subset
evaluator, and search method has its own options. They can be printed with
–h.

There are two types of evaluators that you can specify with –E: ones that
consider one attribute at a time, and ones that consider sets of attributes
together. The former are subclasses of weka.attributeSelection.

AttributeEvaluator—an example is weka.attributeSelection.

InfoGainAttributeEval, which evaluates attributes according to their
information gain. The latter are subclasses of weka.attributeSelection.
SubsetEvaluator—like weka.attributeSelection.CfsSubsetEval, which
evaluates subsets of features by the correlation among them. If you give
the name of a subclass of AttributeEvaluator, you must also provide, using
–T, a threshold by which the filter can discard low-scoring attributes. On
the other hand, if you give the name of a subclass of SubsetEvaluator, you
must provide the name of a search class using –S , which is used to search
through possible subsets of attributes. Any subclass of
weka.attributeSelection.ASSearch can be used for this option—for
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Apriori

=======

Minimum support: 0.2

Minimum confidence: 0.9

Number of cycles performed: 17

Generated sets of large itemsets:

Size of set of large itemsets L(1): 12

Size of set of large itemsets L(2): 47

Size of set of large itemsets L(3): 39

Size of set of large itemsets L(4): 6

Best rules found:

1 . humidity=normal windy=FALSE 4 ==> play=yes 4 (1)

2 . temperature=cool 4 ==> humidity=normal 4 (1)

3 . outlook=overcast 4 ==> play=yes 4 (1)

4 . temperature=cool play=yes 3 ==> humidity=normal 3 (1)

5 . outlook=rainy windy=FALSE 3 ==> play=yes 3 (1)

6 . outlook=rainy play=yes 3 ==> windy=FALSE 3 (1)

7 . outlook=sunny humidity=high 3 ==> play=no 3 (1)

8 . outlook=sunny play=no 3 ==> humidity=high 3 (1)

9 . temperature=cool windy=FALSE 2 ==> humidity=normal play=yes 2 (1)

10. temperature=cool humidity=normal windy=FALSE 2 ==> play=yes 2 (1)

Figure 8.8  Output from the APRIORI association rule learner.

example weka.attributeSelection.BestFirst, which implements a best-
first search.

Here is an example showing AttributeSelectionFilter being used with
correlation-based subset evaluation and best-first search for the weather
data:

java weka.filters.AttributeSelectionFilter

   -S weka.attributeSelection.BestFirst

   -E weka.attributeSelection.CfsSubsetEval

   -i weather.arff -c5

To provide options for the evaluator, you must enclose both the name of
the evaluator and its options in double quotes (e.g., –S “<evaluator>

<options>“). Options for the search class can be specified in the same way.
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Table 8.6 Principal options for the APRIORI association rule learner.

option function

-t <training file> Specify training file

-N <required number of rules> Specify required number of rules

-C <minimum confidence of a rule> Specify minimum confidence of a rule

-D <delta for minimum support> Specify delta for decrease of minimum support

-M <lower bound for minimum support> Specify lower bound for minimum support

Association rules

Weka includes an implementation of the APRIORI algorithm for generating
association rules: the class for this is weka.associations.Apriori. To see
what it does, try

java weka.associations.Apriori –t weather.nominal.arff

where weather.nominal.arff is the nominal version of the weather data
from Section 1.2. (The APRIORI algorithm can only deal with nominal
attributes.)

The output is shown in Figure 8.8. The last part gives the association
rules that are found. The number preceding the ==> symbol indicates the
rule’s support, that is, the number of items covered by its premise.
Following the rule is the number of those items for which the rule’s
consequent holds as well. In parentheses is the confidence of the rule—in
other words, the second figure divided by the first. In this simple example,
the confidence is 1 for every rule. APRIORI orders rules according to their
confidence and uses support as a tiebreaker. Preceding the rules are the
numbers of item sets found for each support size considered. In this case
six  item  sets  of  four  items  were found  to have  the  required  minimum

Table 8.7 Generic options for clustering schemes in Weka.

option function

-t <training file> Specify training file

-T <test file> Specify test file

-x <number of folds> Specify number of folds for cross-validation

-s <random number seed> Specify random number seed for cross-
validation

-l <input file> Specify input file for model

-d <output file> Specify output file for model

-p Only output predictions for test instances
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support.
By default, APRIORI tries to generate ten rules. It begins with a

minimum support of 100% of the data items and decreases this in steps of
5% until there are at least ten rules with the required minimum confidence,
or until the support has reached a lower bound of 10%, whichever occurs
first. The minimum confidence is set to 0.9 by default. As you can see
from the beginning of Figure 8.8, the minimum support decreased to 0.2,
or 20%, before the required number of rules could be generated; this
involved a total of 17 iterations.

All of these parameters can be changed by setting the corresponding
options. As with other learning algorithms, if the program is invoked
without any command-line arguments, all applicable options are listed. The
principal ones are summarized in Table 8.6.

Clustering

Weka includes a package that contains clustering algorithms,
weka.clusterers. These operate in a similar way to the classification
methods in weka.classifiers. The command-line options are again split into
generic and scheme-specific options. The generic ones, summarized in
Table 8.7, are just the same as for classifiers except that a cross-validation
is not performed by default if the test file is missing.

It may seem strange that there is an option for providing test data.
However, if clustering is accomplished by modeling the distribution of
instances probabilistically, it is possible to check how well the model fits
the data by computing the likelihood of a set of test data given the model.
Weka measures goodness-of-fit by the logarithm of the likelihood, or log-
likelihood: and the larger this quantity, the better the model fits the data.
Instead of using a single test set, it is also possible to compute a cross-
validation estimate of the log-likelihood using –x.

Weka also outputs how many instances are assigned to each cluster. For
clustering algorithms that do not model the instance distribution
probabilistically, these are the only statistics that Weka outputs. It’s easy to
find out which clusterers generate a probability distribution: they are
subclasses of weka.clusterers.DistributionClusterer.

There are two clustering algorithms in weka.clusterers:
weka.clusterers.EM and weka.clusterers.Cobweb. The former is an
implementation of the EM algorithm and the latter implements the
incremental clustering algorithm (both are described in Chapter 6, Section
6.6). They can handle both numeric and nominal attributes.

Like Naive Bayes, EM makes the assumption that the attributes are
independent random variables. The command line

java weka.clusterers.EM -t weather.arff -N 2
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results in the output shown in Figure 8.9. The –N options forces EM to
generate two clusters. As you can see, the number of clusters is printed
first, followed by a description of each one: the cluster’s prior probability
and a probability distribution for all attributes in the dataset. For a nominal
attribute, the distribution is represented by the count associated with each
value (plus one); for a numeric attribute it is a standard normal
distribution. EM also outputs the number of training instances in each
cluster, and the log-likelihood of the training data with respect to the
clustering that it generates.

By default, EM selects the number of clusters automatically by
maximizing the logarithm of the likelihood of future data, estimated using
cross-validation. Beginning with one cluster, it continues to add clusters
until the estimated log-likelihood decreases. However, if you have access to
prior knowledge about the number of clusters in your data, it makes sense
to force EM to generate the desired number of clusters. Apart from –N, EM
recognizes two additional scheme-specific command-line options: –I sets
the maximum number of iterations performed by the algorithm, and –S
sets the random number seed used to initialize the cluster membership
probabilities.

The cluster hierarchy generated by COBWEB is controlled by two
parameters: the acuity and the cutoff (see Chapter 6, page 216). They can
be set using the command-line options –A and –C, and are given as a
percentage. COBWEB’s output is very sensitive to these parameters, and it
pays to spend some time experimenting with them.

8.4 Embedded machine learning
When invoking learning schemes and filter algorithms from the command
line, there is no need to know anything about programming in Java. In this
section we show how to access these algorithms from your own code. In
doing so, the advantages of using an object-oriented programming
language will become clear. From now on, we assume that you have at least
some rudimentary knowledge of Java. In most practical applications of
data mining, the learning component is an integrated part of a far larger
software environment. If the environment is written in Java, you can use
Weka to solve the learning problem without writing any machine learning
code yourself.

A simple message classifier

We present a simple data mining application, automatic classification of
email messages, to illustrate how to access classifiers and filters. Because its
purpose is  educational, the system has been kept as simple as possible, and
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EM

==

Number of clusters: 2

Cluster: 0 Prior probability: 0.2816

Attribute: outlook

Discrete Estimator. Counts =  2.96 2.98 1  (Total = 6.94)

Attribute: temperature

Normal Distribution. Mean =  82.2692 StdDev =   2.2416

Attribute: humidity

Normal Distribution. Mean =  83.9788 StdDev =   6.3642

Attribute: windy

Discrete Estimator. Counts =  1.96 3.98  (Total = 5.94)

Attribute: play

Discrete Estimator. Counts =  2.98 2.96  (Total = 5.94)

Cluster: 1 Prior probability: 0.7184

Attribute: outlook

Discrete Estimator. Counts =  4.04 3.02 6  (Total = 13.06)

Attribute: temperature

Normal Distribution. Mean =  70.1616 StdDev =   3.8093

Attribute: humidity

Normal Distribution. Mean =  80.7271 StdDev =  11.6349

Attribute: windy

Discrete Estimator. Counts =  6.04 6.02  (Total = 12.06)

Attribute: play

Discrete Estimator. Counts =  8.02 4.04  (Total = 12.06)

=== Clustering stats for training data ===

Cluster Instances

      0         4  (29 %)

      1        10  (71 %)

Log likelihood: -9.01881

Figure 8.9 Output from the EM clustering scheme.
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it certainly doesn’t perform at the state of the art. However, it will give you
an idea how to use Weka in your own application. Furthermore, it is
straightforward to extend the system to make it more sophisticated.

The first problem faced when trying to apply machine learning in a
practical setting is selecting attributes for the data at hand. This is probably
also the most important problem: if you don’t choose meaningful
attributes—attributes which together convey sufficient information to make
learning tractable—any attempt to apply machine learning techniques is
doomed to fail. In truth, the choice of a learning scheme is usually far less
important than coming up with a suitable set of attributes.

In the example application, we do not aspire to optimum performance,
so we use rather simplistic attributes: they count the number of times
specific keywords appear in the message to be classified. We assume that
each message is stored in an individual file, and the program is called every
time a new message is to be processed. If the user provides a class label for
the message, the system will use the message for training; if not, it will try
to classify it. The instance-based classifier IBk is used for this example
application.

Figure 8.10 shows the source code for the application program,
implemented in a class called MessageClassifier. The main() method
accepts the following command-line arguments: the name of a message file
(given by –m), the name of a file holding an object of class
MessageClassifier (–t) and, optionally, the classification of the message
(–c). The message’s class can be hit or miss. If the user provides a
classification using –c, the message will be added to the training data; if
not, the program will classify the message as either hit or miss.

Main()
The main() method reads the message into an array of characters and
checks whether the user has provided a classification for it. It then attempts
to read an existing MessageClassifier object from the file given by –t. If
this file does not exist, a new object of class MessageClassifier will be
created. In either case the resulting object is called messageCl. After
checking for illegal command-line options, the given message is used to
either update messageCl by calling the method updateModel() on it, or
classify it by calling classifyMessage(). Finally, if messageCl has been
updated, the object is saved back into the file. In the following, we first
discuss how a new MessageClassifier object is created by the constructor
MessageClassifier(), and then explain how the two methods updateModel()
and classifyMessage() work.

MessageClassifier()
Each time a new MessageClassifier is created, objects for holding a dataset,
a filter,  and a  classifier are  generated  automatically. The  only  nontrivial
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/**
* Java program for classifying short text messages into two classes.
 */

import weka.core.*;
import weka.classifiers.*;
import weka.filters.*;
import java.io.*;
import java.util.*;

public class MessageClassifier implements Serializable {

  /* Our (rather arbitrary) set of keywords. */
  private final String[] m_Keywords = {“product”, “only”, “offer”, “great”,

    “amazing”, “phantastic”, “opportunity”, “buy”, “now”};

  /* The training data. */
  private Instances m_Data = null;

  /* The filter. */
  private Filter m_Filter = new DiscretizeFilter();

  /* The classifier. */
  private Classifier m_Classifier = new IBk();

  /**
   * Constructs empty training dataset.
   */
  public MessageClassifier() throws Exception {

    String nameOfDataset = “MessageClassificationProblem”;

    // Create numeric attributes.
    FastVector attributes = new FastVector(m_Keywords.length + 1);
    for (int i = 0 ; i < m_Keywords.length; i++) {
      attributes.addElement(new Attribute(m_Keywords[i]));
    }

    // Add class attribute.
    FastVector classValues = new FastVector(2);
    classValues.addElement(“miss”);
    classValues.addElement(“hit”);
    attributes.addElement(new Attribute(“Class”, classValues));

    // Create dataset with initial capacity of 100, and set index of class.
    m_Data = new Instances(nameOfDataset, attributes, 100);
    m_Data.setClassIndex(m_Data.numAttributes() - 1);
  }

  /**
   * Updates model using the given training message.
   */
  public void updateModel(String message, String classValue)
    throws Exception {

Figure 8.10 Source code for the message classifier.
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    // Convert message string into instance.
    Instance instance = makeInstance(cleanupString(message));

    // Add class value to instance.
    instance.setClassValue(classValue);

    // Add instance to training data.
    m_Data.add(instance);

    // Use filter.
    m_Filter.inputFormat(m_Data);
    Instances filteredData = Filter.useFilter(m_Data, m_Filter);

    // Rebuild classifier.
    m_Classifier.buildClassifier(filteredData);
  }

  /**
   * Classifies a given message.
   */
  public void classifyMessage(String message) throws Exception {

    // Check if classifier has been built.
    if (m_Data.numInstances() == 0) {
      throw new Exception(“No classifier available.”);
    }

    // Convert message string into instance.
    Instance instance = makeInstance(cleanupString(message));

    // Filter instance.
    m_Filter.input(instance);
    Instance filteredInstance = m_Filter.output();

    // Get index of predicted class value.
    double predicted = m_Classifier.classifyInstance(filteredInstance);

    // Classify instance.
    System.err.println(“Message classified as : “ +

                    m_Data.classAttribute().value((int)predicted));
  }

  /**
   * Method that converts a text message into an instance.
   */
  private Instance makeInstance(String messageText) {

    StringTokenizer tokenizer = new StringTokenizer(messageText);
    Instance instance = new Instance(m_Keywords.length + 1);
    String token;

    // Initialize counts to zero.
    for (int i = 0; i < m_Keywords.length; i++) {

Figure 8.10 (continued)
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      instance.setValue(i, 0);
    }

    // Compute attribute values.
    while (tokenizer.hasMoreTokens()) {
      token = tokenizer.nextToken();
      for (int i = 0; i < m_Keywords.length; i++) {
        if (token.equals(m_Keywords[i])) {
          instance.setValue(i, instance.value(i) + 1.0);
          break;
        }
      }
    }

    // Give instance access to attribute information from the dataset.
    instance.setDataset(m_Data);

    return instance;
  }

  /**
   * Method that deletes all non-letters from a string, and lowercases it.
   */
  private String cleanupString(String messageText) {

    char[] result = new char[messageText.length()];
    int position = 0;

    for (int i = 0; i < messageText.length(); i++) {
      if (Character.isLetter(messageText.charAt(i)) ||
        Character.isWhitespace(messageText.charAt(i))) {
        result[position++] = Character.toLowerCase(messageText.charAt(i));
      }
    }
    return new String(result);
  }

  /**
   * Main method.
   */
  public static void main(String[] options) {

    MessageClassifier messageCl;
    byte[] charArray;

    try {

      // Read message file into string.
      String messageFileString = Utils.getOption('m', options);
      if (messageFileString.length() != 0) {
        FileInputStream messageFile = new FileInputStream(messageFileString);
        int numChars = messageFile.available();

Figure 8.10 (continued)
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        charArray = new byte[numChars];
        messageFile.read(charArray);
        messageFile.close();
      } else {
        throw new Exception ("Name of message file not provided.");
      }

      // Check if class value is given.
      String classValue = Utils.getOption('c', options);

      // Check for model file. If existent, read it, otherwise create new
      // one.
      String modelFileString = Utils.getOption('t', options);
      if (modelFileString.length() != 0) {
        try {
          FileInputStream modelInFile = new FileInputStream(modelFileString);
          ObjectInputStream modelInObjectFile =
            new ObjectInputStream(modelInFile);
          messageCl = (MessageClassifier) modelInObjectFile.readObject();
          modelInFile.close();
        } catch (FileNotFoundException e) {
          messageCl = new MessageClassifier();
        }
      } else {
        throw new Exception ("Name of data file not provided.");
      }

      // Check if there are any options left
      Utils.checkForRemainingOptions(options);

      // Process message.
      if (classValue.length() != 0) {
        messageCl.updateModel(new String(charArray), classValue);
      } else {
        messageCl.classifyMessage(new String(charArray));
      }

      // If class has been given, updated message classifier must be saved
      if (classValue.length() != 0) {
        FileOutputStream modelOutFile =
          new FileOutputStream(modelFileString);
        ObjectOutputStream modelOutObjectFile =
          new ObjectOutputStream(modelOutFile);
        modelOutObjectFile.writeObject(messageCl);
        modelOutObjectFile.flush();
        modelOutFile.close();
      }
    } catch (Exception e) {
      e.printStackTrace();
    }
  }
}

Figure 8.10



8.4    EMBEDDED MACHINE LEARNING        3 0 5 

part of the process is creating a dataset, which is done by the constructor
MessageClassifier(). First the dataset’s name is stored as a string. Then an
Attribute object is created for each of the attributes—one for each
keyword, and one for  the class. These objects are stored in a dynamic
array of type FastVector. (FastVector is Weka’s own fast implementation
of the standard Java Vector class. Vector is implemented in a way that
allows parallel programs to synchronize access to them, which was very
slow in early Java implementations.)

Attributes are created by invoking one of the two constructors in the
class Attribute. The first takes one parameter—the attribute’s name—and
creates a numeric attribute. The second takes two parameters: the
attribute’s name and a FastVector holding the names of its values. This
latter constructor generates a nominal attribute. In MessageClassifier, the
attributes for the keywords are numeric, so only their names need be
passed to Attribute(). The keyword itself is used to name the attribute.
Only the class attribute is nominal, with two values: hit and miss. Hence,
MessageClassifier() passes its name (“class”) and the values—stored in a
FastVector—to Attribute().

Finally, to create a dataset from this attribute information,
MessageClassifier() must create an object of the class Instances from the
core package. The constructor of Instances used by MessageClassifier()
takes three arguments: the dataset’s name, a FastVector containing the
attributes, and an integer indicating the dataset’s initial capacity. We set the
initial capacity to 100; it is expanded automatically if more instances are
added to the dataset. After constructing the dataset, MessageClassifier()
sets the index of the class attribute to be the index of the last attribute.

UpdateModel()
Now that you know how to create an empty dataset, consider how the
MessageClassifier object actually incorporates a new training message.
The method updateModel() does this job. It first calls cleanupString() to
delete all nonletters and non-whitespace characters from the message. Then
it converts the message into a training instance by calling makeInstance().
The latter method counts the number of times each of the keywords in
m_Keywords appears in the message, and stores the result in an object of the
class Instance from the core package. The constructor of Instance used in
makeInstance() sets all the instance’s values to be missing, and its weight to
1. Therefore makeInstance() must set all attribute values other than the
class to 0 before it starts to calculate keyword frequencies.

Once the message has been processed, makeInstance() gives the newly
created instance access to the data’s attribute information by passing it a
reference to the dataset. In Weka, an Instance object does not store the
type of each attribute explicitly; instead it stores a reference to a dataset
with the corresponding attribute information.
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Returning to updateModel(), once the new instance has been returned
from makeInstance() its class value is set and it is added to the training
data. In the next step a filter is applied to this data. In our application the
DiscretizeFilter is used to discretize all numeric attributes. Because a
class index has been set for the dataset, the filter automatically uses
supervised discretization (otherwise equal-width discretization would be
used). Before the data can be transformed, we must first inform the filter of
its format. This is done by passing it a reference to the corresponding
input dataset via inputFormat(). Every time this method is called, the filter
is initialized—that is, all its internal settings are reset. In the next step, the
data is transformed by useFilter(). This generic method from the Filter
class applies a given filter to a given dataset. In this case, because the
DiscretizeFilter has just been initialized, it first computes discretization
intervals from the training dataset, then uses these intervals to discretize it.
After returning from useFilter(), all the filter’s internal settings are fixed
until it is initialized by another call of inputFormat(). This makes it
possible to filter a test instance without updating the filter’s internal
settings.

In the last step, updateModel() rebuilds the classifier—in our program, an
instance-based IBk classifier—by passing the training data to its
buildClassifier() method. It is a convention in Weka that the
buildClassifier() method completely initializes the model’s internal
settings before generating a new classifier.

ClassifyMessage()
Now we consider how MessageClassifier processes a test message—a
message for which the class label is unknown. In classifyMessage(), our
program first checks that a classifier has been constructed by seeing if any
training instances are available. It then uses the methods described
above—cleanupString() and makeInstance()—to transform the message
into a test instance. Because the classifier has been built from filtered
training data, the test instance must also be processed by the filter before it
can be classified. This is very easy: the input() method enters the instance
into the filter object, and the transformed instance is obtained by calling
output(). Then a prediction is produced by passing the instance to the
classifier’s classifyInstance() method. As you can see, the prediction is
coded as a double value. This allows Weka’s evaluation module to treat
models for categorical and numeric prediction similarly. In the case of
categorical prediction, as in this example, the double variable holds the
index of the predicted class value. In order to output the string
corresponding to this class value, the program calls the value() method of
the dataset’s class attribute.
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8.5 Writing new learning schemes
Suppose you need to implement a special-purpose learning algorithm that
is not included in Weka, or a filter that performs an unusual data
transformation. Or suppose you are engaged in machine learning research
and want to investigate a new learning scheme or data preprocessing
operation. Or suppose you just want to learn more about the inner
workings of an induction algorithm by actually programming it yourself.
This section shows how to make full use of Weka’s class hierarchy when
writing classifiers and filters, using a simple example of each.

Several elementary learning schemes, not mentioned above, are included
in Weka mainly for educational purposes: they are listed in Table 8.8.
None of them takes any scheme-specific command-line options. All these
implementations are useful for understanding the inner workings of a
classifier. As an example, we discuss the weka.classifiers.Id3 scheme,
which implements the ID3 decision tree learner from Section 4.3.

An example classifier

Figure 8.11 gives the source code of weka.classifiers.Id3, which, as you
can see from the code, extends the DistributionClassifier class. This
means that in addition to the buildClassifier() and classifyInstance()
methods from the Classifier class it also implements the
distributionForInstance() method, which returns a predicted distribution
of class probabilities for an instance. We will study the implementation of
these three methods in turn.

BuildClassifier()
The buildClassifier() method constructs a classifier from a set of training
data. In our implementation it first checks the training data for a non-
nominal class, missing values, or any other attribute that is not nominal,
because the ID3 algorithm can’t handle these. It then makes a copy of the
training set (to avoid changing the original data) and calls a method from

Table 8.8 Simple learning schemes in Weka.

scheme description section

weka.classifiers.NaiveBayesSimple Probabilistic learner 4.2

weka.classifiers.Id3 Decision tree learner 4.3

weka.classifiers.Prism Rule learner from 4.4

weka.classifiers.IB1 Instance-based learner 4.7
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import weka.classifiers.*;
import weka.core.*;
import java.io.*;
import java.util.*;

/**
 * Class implementing an Id3 decision tree classifier.
 */
public class Id3 extends DistributionClassifier {

  /** The node's successors. */
  private Id3[] m_Successors;

  /** Attribute used for splitting. */
  private Attribute m_Attribute;

  /** Class value if node is leaf. */
  private double m_ClassValue;

  /** Class distribution if node is leaf. */
  private double[] m_Distribution;

  /** Class attribute of dataset. */
  private Attribute m_ClassAttribute;

  /**
   * Builds Id3 decision tree classifier.
   */
  public void buildClassifier(Instances data) throws Exception {

    if (!data.classAttribute().isNominal()) {
      throw new Exception(“Id3: nominal class, please.”);
    }
    Enumeration enumAtt = data.enumerateAttributes();
    while (enumAtt.hasMoreElements()) {
      Attribute attr = (Attribute) enumAtt.nextElement();
      if (!attr.isNominal()) {
        throw new Exception(“Id3: only nominal attributes, please.”);
      }
      Enumeration enum = data.enumerateInstances();
      while (enum.hasMoreElements()) {
        if (((Instance) enum.nextElement()).isMissing(attr)) {
          throw new Exception(“Id3: no missing values, please.”);
        }
      }
    }
    data = new Instances(data);
    data.deleteWithMissingClass();
    makeTree(data);
  }

  /**
   * Method building Id3 tree.
   */
  private void makeTree(Instances data) throws Exception {

    // Check if no instances have reached this node.

Figure 8.11  Source code for the ID3 decision tree learner.
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    if (data.numInstances() == 0) {
      m_Attribute = null;
      m_ClassValue = Instance.missingValue();
      m_Distribution = new double[data.numClasses()];
      return;
    }

    // Compute attribute with maximum information gain.
    double[] infoGains = new double[data.numAttributes()];
    Enumeration attEnum = data.enumerateAttributes();
    while (attEnum.hasMoreElements()) {
      Attribute att = (Attribute) attEnum.nextElement();
      infoGains[att.index()] = computeInfoGain(data, att);
    }
    m_Attribute = data.attribute(Utils.maxIndex(infoGains));

    // Make leaf if information gain is zero.
    // Otherwise create successors.
    if (Utils.eq(infoGains[m_Attribute.index()], 0)) {
      m_Attribute = null;
      m_Distribution = new double[data.numClasses()];
      Enumeration instEnum = data.enumerateInstances();
      while (instEnum.hasMoreElements()) {
        Instance inst = (Instance) instEnum.nextElement();
        m_Distribution[(int) inst.classValue()]++;
        }
      Utils.normalize(m_Distribution);
      m_ClassValue = Utils.maxIndex(m_Distribution);
      m_ClassAttribute = data.classAttribute();
    } else {
      Instances[] splitData = splitData(data, m_Attribute);
      m_Successors = new Id3[m_Attribute.numValues()];
      for (int j = 0; j < m_Attribute.numValues(); j++) {
        m_Successors[j] = new Id3();
        m_Successors[j].buildClassifier(splitData[j]);
      }
    }
  }

  /**
   * Classifies a given test instance using the decision tree.
   */

  public double classifyInstance(Instance instance) {

    if (m_Attribute == null) {
      return m_ClassValue;
    } else {
      return m_Successors[(int) instance.value(m_Attribute)].
          classifyInstance(instance);
    }
  }

  /**
   * Computes class distribution for instance using decision tree.
   */
  public double[] distributionForInstance(Instance instance) {

Figure 8.11  (continued)
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    if (m_Attribute == null) {
      return m_Distribution;
    } else {
      return m_Successors[(int) instance.value(m_Attribute)].
          distributionForInstance(instance);
    }
  }

  /**
   * Prints the decision tree using the private toString method from below.
   */
  public String toString() {

    return “Id3 classifier\n==============\n“ + toString(0);
  }

  /**
   * Computes information gain for an attribute.
   */
  private double computeInfoGain(Instances data, Attribute att)
    throws Exception {

    double infoGain = computeEntropy(data);
    Instances[] splitData = splitData(data, att);
    for (int j = 0; j < att.numValues(); j++) {
      if (splitData[j].numInstances() > 0) {
        infoGain -= ((double) splitData[j].numInstances() /
                     (double) data.numInstances()) *
          computeEntropy(splitData[j]);
      }
    }
    return infoGain;
  }

 /**
  * Computes the entropy of a dataset.
  */
  private double computeEntropy(Instances data) throws Exception {

    double [] classCounts = new double[data.numClasses()];
    Enumeration instEnum = data.enumerateInstances();
    while (instEnum.hasMoreElements()) {
      Instance inst = (Instance) instEnum.nextElement();
      classCounts[(int) inst.classValue()]++;
    }
    double entropy = 0;
    for (int j = 0; j < data.numClasses(); j++) {
      if (classCounts[j] > 0) {
        entropy -= classCounts[j] * Utils.log2(classCounts[j]);
      }
    }
    entropy /= (double) data.numInstances();
    return entropy + Utils.log2(data.numInstances());
  }

  /**
   * Splits a dataset according to the values of a nominal attribute.

Figure 8.11  (continued)
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   */
  private Instances[] splitData(Instances data, Attribute att) {

    Instances[] splitData = new Instances[att.numValues()];
    for (int j = 0; j < att.numValues(); j++) {
      splitData[j] = new Instances(data, data.numInstances());
    }
    Enumeration instEnum = data.enumerateInstances();
    while (instEnum.hasMoreElements()) {
      Instance inst = (Instance) instEnum.nextElement();
      splitData[(int) inst.value(att)].add(inst);
    }
    return splitData;
  }

  /**
   * Outputs a tree at a certain level.
   */
  private String toString(int level) {

    StringBuffer text = new StringBuffer();

    if (m_Attribute == null) {
      if (Instance.isMissingValue(m_ClassValue)) {
        text.append(“: null”);

      } else {

        text.append(“: “+m_ClassAttribute.value((int) m_ClassValue));
      }
   } else {
      for (int j = 0; j < m_Attribute.numValues(); j++) {
        text.append(“\n”);
        for (int i = 0; i < level; i++) {
          text.append(“|  “);
        }
        text.append(m_Attribute.name() + “ = “ + m_Attribute.value(j));
        text.append(m_Successors[j].toString(level + 1));
      }
    }
    return text.toString();
  }

  /**
   * Main method.
   */
  public static void main(String[] args) {

    try {
      System.out.println(Evaluation.evaluateModel(new Id3(), args));
    } catch (Exception e) {
      System.out.println(e.getMessage());
    }
  }
}

Figure 8.11
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weka.core.Instances to delete all instances with missing class values,
because these instances are useless in the training process. Finally it calls
makeTree(), which actually builds the decision tree by recursively
generating all subtrees attached to the root node.

MakeTree()
In makeTree(), the first step is to check whether the dataset is empty. If not,
a leaf is created by setting m_Attribute to null. The class value
m_ClassValue assigned to this leaf is set to be missing, and the estimated
probability for each of the dataset’s classes in m_Distribution is initialized
to zero. If training instances are present, makeTree() finds the attribute that
yields the greatest information gain for them. It first creates a Java
Enumeration of the dataset’s attributes. If the index of the class attribute is
set—as it will be for this dataset—the class is automatically excluded from
the enumeration. Inside the enumeration, the information gain for each
attribute is computed by computeInfoGain() and stored in an array. We will
return to this method later. The index() method from weka.core.Attribute
returns the attribute’s index in the dataset, which is used to index the array.
Once the enumeration is complete, the attribute with greatest information
gain is stored in the class variable m_Attribute. The maxIndex() method
from weka.core.Utils returns the index of the greatest value in an array of
integers or doubles. (If there is more than one element with maximum
value, the first is returned.) The index of this attribute is passed to the
attribute() method from weka.core.Instances, which returns the
corresponding attribute.

You might wonder what happens to the array field corresponding to the
class attribute. We need not worry about this because Java automatically
initializes all elements in an array of numbers to zero, and the information
gain is always greater than or equal to zero. If the maximum information
gain is zero, makeTree() creates a leaf. In that case m_Attribute is set to null,
and makeTree() computes both the distribution of class probabilities and
the class with greatest probability. (The normalize() method from
weka.core.Utils normalizes an array of doubles so that its sum is 1.)

When it makes a leaf with a class value assigned to it, makeTree() stores
the class attribute in m_ClassAttribute. This is because the method that
outputs the decision tree needs to access this in order to print the class
label.

If an attribute with nonzero information gain is found, makeTree() splits
the dataset according to the attribute’s values and recursively builds
subtrees for each of the new datasets. To make the split it calls the method
splitData(). This first creates as many empty datasets as there are attribute
values and stores them in an array (setting the initial capacity of each
dataset to the number of instances in the original dataset), then iterates
through all instances in the original dataset and allocates them to the new
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dataset that corresponds to the attribute’s value. Returning to makeTree(),
the resulting array of datasets is used for building subtrees. The method
creates an array of Id3 objects, one for each attribute value, and calls
buildClassifier() on each by passing it the corresponding dataset.

ComputeInfoGain()
Returning to computeInfoGain(), this calculates the information gain
associated with an attribute and a dataset using a straightforward
implementation of the method in Section 4.3 (pp. 92–94). First it
computes the entropy of the dataset. Then it uses splitData() to divide it
into subsets, and calls computeEntropy() on each one. Finally it returns the
difference between the former entropy and the weighted sum of the latter
ones—the information gain. The method computeEntropy() uses the log2()
method from weka.core.Utils to compute the logarithm (to base 2) of a
number.

ClassifyInstance()
Having seen how ID3 constructs a decision tree, we now examine how it
uses the tree structure to predict class values and probabilities. Let’s first
look at classifyInstance(), which predicts a class value for a given
instance. In Weka, nominal class values—like the values of all nominal
attributes—are coded and stored in double variables, representing the index
of the value’s name in the attribute declaration. We chose this
representation in favor of a more elegant object-oriented approach to
increase speed of execution and reduce storage requirements. In our
implementation of ID3, classifyInstance() recursively descends the tree,
guided by the instance’s attribute values, until it reaches a leaf. Then it
returns the class value m_ClassValue stored at this leaf. The method
distributionForInstance() works in exactly the same way, returning the
probability distribution stored in m_Distribution.

Most machine learning models, and in particular decision trees, serve as
a more or less comprehensible explanation of the structure found in the
data. Accordingly each of Weka’s classifiers, like many other Java objects,
implements a toString() method that produces a textual representation of
itself in the form of a String variable. ID3’s toString() method outputs a
decision tree in roughly the same format as J4.8 (Figure 8.2). It
recursively prints the tree structure into a String variable by accessing the
attribute information stored at the nodes. To obtain each attribute’s name
and values, it uses the name() and value() methods from
weka.core.Attribute.

Main()
The only method in Id3 that hasn’t been described is main(), which is
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called whenever the class is executed from the command line. As you can
see, it’s simple: it basically just tells Weka’s Evaluation class to evaluate Id3
with the given command-line options, and prints the resulting string. The
one-line expression that does this is enclosed in a try-catch statement,
which catches the various exceptions that can be thrown by Weka’s
routines or other Java methods.

The evaluation() method in weka.classifiers.Evaluation interprets the
generic scheme-independent command-line options discussed in Section
8.3, and acts appropriately. For example, it takes the –t option, which gives
the name of the training file, and loads the corresponding dataset. If no test
file is given, it performs a cross-validation by repeatedly creating classifier
objects and calling buildClassifier(), classifyInstance(), and
distributionForInstance() on different subsets of the training data. Unless
the user suppresses output of the model by setting the corresponding
command-line option, it also calls the toString() method to output the
model built from the full training dataset.

What happens if the scheme needs to interpret a specific option such as a
pruning parameter? This is accomplished using the OptionHandler interface
in weka.classifiers. A classifier that implements this interface contains
three methods, listOptions(), setOptions(), and getOptions(), which can
be used to list all the classifier’s scheme-specific options, to set some of
them, and to get the options that are currently set. The evaluation()
method in Evaluation automatically calls these methods if the classifier
implements the OptionHandler interface. Once the scheme-independent
options have been processed, it calls setOptions() to process the remaining
options before using buildClassifier() to generate a new classifier. When
it outputs the classifier, it uses getOptions() to output a list of the options
that are currently set. For a simple example of how to implement these
methods, look at the source code for weka.classifiers.OneR.

Some classifiers are incremental, that is, they can be incrementally
updated as new training instances arrive and don’t have to process all the
data in one batch. In Weka, incremental classifiers implement the
UpdateableClassifier interface in weka.classifiers. This interface
declares only one method, namely updateClassifier(), which takes a
single training instance as its argument. For an example of how to use this
interface, look at the source code for weka.classifiers.IBk.

If a classifier is able to make use of instance weights, it should
implement the WeightedInstancesHandler() interface from weka.core.
Then other algorithms, such as the boosting algorithms, can make use of
this property.

Conventions for implementing classifiers

There are some conventions that you must obey when implementing
classifiers in Weka. If you do not, things will go awry—for example,
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Weka’s evaluation module might not compute the classifier’s statistics
properly when evaluating it.

The first convention has already been mentioned: each time a
classifier’s buildClassifier() method is called, it must reset the model.
The CheckClassifier class described in Section 8.3 performs appropriate
tests to ensure that this is the case. When buildClassifier() is called on a
dataset, the same result must always be obtained, regardless of how often
the classifier has been applied before to other datasets. However,
buildClassifier() must not reset class variables that correspond to
scheme-specific options, because these settings must persist through
multiple calls of buildClassifier(). Also, a call of buildClassifier() must
never change the input data.

The second convention is that when the learning scheme can’t make a
prediction, the classifier’s classifyInstance() method must return
Instance.missingValue() and its distributionForInstance() method must
return zero probabilities for all classes. The ID3 implementation in Figure
8.11 does this.

The third convention concerns classifiers for numeric prediction. If a
Classifier is used for numeric prediction, classifyInstance() just returns
the numeric value that it predicts. In some cases, however, a classifier might
be able to predict nominal classes and their class probabilities, as well as
numeric class values—weka.classifiers.IBk is an example. In that case,
the classifier is a DistributionClassifier and implements the
distributionForInstance() method. What should distributionFor

Instance() return if the class is numeric? Weka’s convention is that it
returns an array of size one whose only element contains the predicted
numeric value.

Another convention—not absolutely essential, but very useful
nonetheless—is that every classifier implements a toString() method that
outputs a textual description of itself.

Writing filters

There are two kinds of filter algorithms in Weka, depending on whether,
like DiscretizeFilter, they must accumulate statistics from the whole input
dataset before processing any instances, or, like AttributeFilter, they can
process each instance immediately. We present an implementation of the
first kind, and point out the main differences from the second kind, which
is simpler.

The Filter superclass contains several generic methods for filter
construction, listed in Table 8.9, that are automatically inherited by its
subclasses. Writing a new filter essentially involves overriding some of
these. Filter also documents the purpose of these methods, and how they
need to be changed for particular types of filter algorithm.
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Table 8.9 Public methods in the Filter class.

method description

boolean inputFormat(Instances) Set input format of data, returning true if output
format can be collected immediately

Instances outputFormat() Return output format of data

boolean input(Instance) Input instance into filter, returning true if instance
can be output immediately

boolean batchFinished() Inform filter that all training data has been input,
returning true if instances are pending output

Instance output() Output instance from the filter

Instance outputPeek() Output instance without removing it from output
queue

int numPendingOutput() Return number of instances waiting for output

boolean isOutputFormatDefined() Return true if output format can be collected

The first step in using a filter is to inform it of the input data format,
accomplished by the method inputFormat(). This takes an object of class
Instances and uses its attribute information to interpret future input
instances. The filter’s output data format can be determined by calling
outputFormat()—also stored as an object of class Instances. For filters that
process instances at once, the output format is determined as soon as the
input format has been specified. However, for those that must see the whole
dataset before processing any individual instance, the situation depends on
the particular filter algorithm. For example, DiscretizeFilter needs to see
all training instances before determining the output format, because the
number of discretization intervals is determined by the data. Consequently
the method inputFormat() returns true if the output format can be
determined as soon as the input format has been specified, and false
otherwise. Another way of checking whether the output format exists is to
call isOutputFormatDefined().

Two methods are used for piping instances through the filter: input()
and output(). As its name implies, the former gets an instance into the
filter; it returns true if the processed instance is available immediately and
false otherwise. The latter outputs an instance from the filter and removes
it from its output queue. The outputPeek() method outputs a filtered
instance without removing it from the output queue, and the number of
instances in the queue can be obtained with numPendingOutput().

Filters that must see the whole dataset before processing instances need
to be notified when all training instances have been input. This is done by
calling batchFinished(), which tells the filter that the statistics obtained
from the input data gathered so far—the training data—should not be
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updated when further data is received. For all filter algorithms, once
batchFinished() has been called, the output format can be read and the
filtered training instances are ready for output. The first time input() is
called after batchFinished(), the output queue is reset—that is, all training
instances are removed from it. If there are training instances awaiting
output, batchFinished() returns true, otherwise false.

An example filter

It’s time for an example. The ReplaceMissingValuesFilter takes a dataset
and replaces missing values with a constant. For numeric attributes, the
constant is the attribute’s mean value; for nominal ones, its mode. This
filter must see all the training data before any output can be determined,
and once these statistics have been computed. they must remain fixed when
future test data is filtered. Figure 8.12 shows the source code.

InputFormat()
ReplaceMissingValuesFilter overwrites three of the methods defined in
Filter: inputFormat(), input(), and batchFinished(). In inputFormat(), as
you can see from Figure 8.12, a dataset m_InputFormat is created with the
required input format and capacity zero; this will hold incoming instances.
The method setOutputFormat(), which is a protected method in Filter, is
called to set the output format. Then the variable b_NewBatch, which
indicates whether the next incoming instance belongs to a new batch of
data, is set to true because a new dataset is to be processed; and
m_ModesAndMeans, which will hold the filter’s statistics, is initialized. The
variables b_NewBatch and m_InputFormat are the only fields declared in the
superclass Filter that are visible in ReplaceMissingValuesFilter, and they
must be dealt with appropriately. As you can see from Figure 8.12, the
method inputFormat() returns true because the output format can be
collected immediately—replacing missing values doesn’t change the
dataset’s attribute information.

Input()
An exception is thrown in input() if the input format is not set. Otherwise,
if b_NewBatch is true—that is, if a new batch of data is to be processed—the
filter’s output queue is initialized, causing all instances awaiting output to
be deleted, and the flag b_NewBatch is set to false, because a new instance is
about to be processed. Then, if statistics have not yet been accumulated
from the training data (that is, if m_ModesAndMeans is null), the new instance
is added to m_InputFormat and input() returns false because the instance is
not yet available for output. Otherwise, the instance is converted using
convertInstance(), and true is returned. The method convertInstance()
transforms an instance to the output format by replacing missing values
with the modes and means, and appends it to the output queue by calling
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push(), a protected method defined in Filter. Instances in the filter’s
output queue are ready for collection by output().

BatchFinished()
In batchFinished(), the filter first checks whether the input format is
defined. Then, if no statistics have been stored in m_ModesAndMeans by a
previous call, the modes and means are computed and the training
instances are converted using convertInstance(). Finally, regardless of the
status of m_ModesAndMeans, b_NewBatch is set to true to indicate that the last
batch has been processed, and true is returned if instances are available in
the output queue.

Main()
The main() method evaluates the command-line options and applies the
filter. It does so by calling two methods from Filter: batchFilterFile()
and filterFile(). The former is called if a test file is provided as well as a
training file (using the –b command-line option); otherwise the latter is
called. Both methods interpret the command-line options. If the filter
implements the OptionHandler interface, its setOptions(), getOptions(), and
listOptions() methods are called to deal with any filter-specific options,
just as in the case of classifiers.

In general, as in this particular example of ReplaceMissingValuesFilter,
only the three routines inputFormat(), input(), and batchFinished() need
be changed in order to implement a filter with new functionality. The
method outputFormat() from Filter is actually declared final and can’t
be overwritten anyway. Moreover, if the filter can process each instance
immediately, batchFinished() need not be altered—the default
implementation will do the job. A simple (but not very useful) example of
such a filter is weka.filters.AllFilter, which passes all instances through
unchanged.

Conventions for writing filters

By now, most of the requirements for implementing filters should be clear.
However, some deserve explicit mention. First, filters must never change
the input data, nor add instances to the dataset used to provide the input
format. ReplaceMissingValuesFilter() avoids this by storing an empty
copy of the dataset in m_InputFormat. Second, calling inputFormat() should
initialize the filter’s internal state, but not alter any variables corresponding
to user-provided command-line options. Third, instances input to the filter
should never be pushed directly on to the output queue: they must be
replaced by brand new objects of class Instance. Otherwise, anomalies will
appear if the input instances are changed outside the filter later on. For
example, AllFilter calls the copy() method in Instance to create a copy of
each instance before pushing it on to the output queue.
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import weka.filters.*;
import weka.core.*;
import java.io.*;

/**
 * Replaces all missing values for nominal and numeric attributes in a
 * dataset with the modes and means from the training data.
 */
public class ReplaceMissingValuesFilter extends Filter {

  /** The modes and means */
  private double[] m_ModesAndMeans = null;

  /**
   * Sets the format of the input instances.
   */
  public boolean inputFormat(Instances instanceInfo)
       throws Exception {

    m_InputFormat = new Instances(instanceInfo, 0);
    setOutputFormat(m_InputFormat);
    b_NewBatch = true;
    m_ModesAndMeans = null;
    return true;
  }

  /**
   * Input an instance for filtering. Filter requires all
   * training instances be read before producing output.
   */
  public boolean input(Instance instance) throws Exception {

    if (m_InputFormat == null) {
      throw new Exception(“No input instance format defined”);
    }
    if (b_NewBatch) {
      resetQueue();
      b_NewBatch = false;
    }
    if (m_ModesAndMeans == null) {
      m_InputFormat.add(instance);
      return false;
    } else {
      convertInstance(instance);
      return true;
    }
  }

  /**
   * Signify that this batch of input to the filter is finished.
   */

  public boolean batchFinished() throws Exception {

    if (m_InputFormat == null) {
      throw new Exception(“No input instance format defined”);
    }

Figure 8.11  Source code for the ID3 decision tree learner.
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    if (m_ModesAndMeans == null) {
  

      // Compute modes and means
      m_ModesAndMeans = new double[m_InputFormat.numAttributes()];
      for (int i = 0; i < m_InputFormat.numAttributes(); i++) {
        if (m_InputFormat.attribute(i).isNominal() ||
            m_InputFormat.attribute(i).isNumeric()) {
          m_ModesAndMeans[i] = m_InputFormat.meanOrMode(i);
        }
      }

      // Convert pending input instances
      for(int i = 0; i < m_InputFormat.numInstances(); i++) {
        Instance current = m_InputFormat.instance(i);
        convertInstance(current);
      }
    }

    b_NewBatch = true;
    return (numPendingOutput() != 0);
  }

  /**
   * Convert a single instance over. The converted instance is
   * added to the end of the output queue.
   */
  private void convertInstance(Instance instance) throws Exception {
 

    Instance newInstance = new Instance(instance);

    for(int j = 0; j < m_InputFormat.numAttributes(); j++){
      if (instance.isMissing(j) &&
          (m_InputFormat.attribute(j).isNominal() ||
           m_InputFormat.attribute(j).isNumeric())) {
        newInstance.setValue(j, m_ModesAndMeans[j]);
      }
    }
    push(newInstance);
  }

  /**
   * Main method.
   */

  public static void main(String [] argv) {

    try {
      if (Utils.getFlag(’b’, argv)) {
         Filter.batchFilterFile(new ReplaceMissingValuesFilter(),argv);
      } else {
        Filter.filterFile(new ReplaceMissingValuesFilter(),argv);
      }
    } catch (Exception ex) {
      System.out.println(ex.getMessage());
    }
  }
}

Figure 8.11   
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