
Learning from Data 1

Data Visualisation

David Barber

dbarber@anc.ed.ac.uk

course page : http://anc.ed.ac.uk/∼dbarber/lfd1/lfd1.html
c© David Barber 2001, 2002,2003,2004

1



Learning from Data 1 : c© David Barber 2001,2002,2003,2004 2

In data visualisation we attempt to gain intuition about the struc-
ture of a dataset. Typically, this method is unsupervised (does not
make use of any target values), although supervised visualisation is
also possible. We have seen how to use PCA to reduce the dimen-
sionality of data in a linear fashion to such a degree that we can plot
the reduced dimension dataset in two or three dimensions. Canonical
Variates (see elsewhere) also performs linear dimension reduction ex-
ploiting class information – if we reduce the dimension to only two or
three, we can also visualise the data. Non-linear dimension reduction,
such as autoencoders can also be used in the same way for visuali-
sation. In autoencoders, we constructed the error function to be the
squared error loss between the input and the output. However, there
was no explicit requirement that the low dimensional representation
of the data should, in some sense, be a good visualisation of the high
dimensional data. This issue is addressed here by considering meth-
ods that try to preserve (at least locally) the topology of the high
dimensional data.

In multidimensional scaling (MDS) we are given distances drs be-Multidimensional Scaling
tween every pair of observations (that is, we may not have direct
access to any high-dimensional data, but we do have access to a mea-
sure of the “distances” between every two points). The idea is to
try to reconstruct what the original data was, based solely on these
distances. For example, given only the distances between towns, can
we construct a map for the coordinates of the towns themselves? A
practical area for such methods is in the visualisation of proteins and
other macromolecules based on measures of similarity between the
molecules.

1 Classical Scaling

Consider a set of datapoints {xµ, µ = 1, . . . , P}, where the dimension
of each datapoint, dim(xµ) = n. From this data we can form the
distances between all the datapoints:

T x
ab = (xa − xb)2 (1.1)

to form a P × P distance matrix Tx between the x datapoints. The
idea in Classical Scaling is to find a set of vectors yµ, µ = 1, . . . , P such
that the distance matrix Ty between the y points matches as closely
as possible the distance matrix Tx. The dimension of the datapoints,
dim(y) is typically chosen to be small, either two or three so that we
can visualise the data.

In other words : Given a distance matrix T only, how can we find a
set of points yµ that has this distance matrix?

The interesting thing about Classical Scaling is that the solution to
this problem, for the case of using Euclidean squared distance, is
analytic! Those interested readers may consult the mathematical
details at the end of this chapter. However, the resulting algorithm
is straightforward.

1.1 The Algorithm

Given a P × P distance matrix T :

1. Calculate the P × P matrix M with elements

Mab = −1

2

(

Tab −
1

P

∑

a

Tab +
1

P 2

∑

ab

Tab −
1

P

∑

b

Tab

)

(1.2)

2. Calculate the m largest eigenvalues λi, i = 1, . . . ,m of M, and
their corresponding eigenvectors ei.



Learning from Data 1 : c© David Barber 2001,2002,2003,2004 3

Rome

San Francisco

Shanghai

Stockholm

Rio de Janeiro

Paris

New York

Moscow

Sydney

Washington DC

Warsaw

Tokyo

Montreal

Calcutta

Cape Town

Caracas

Chicago

Cairo

Buenos Aires

Berlin

Hong Kong

Mexico City

Manila

Los Angeles

London
Lisbon

Istanbul

Honolulu

Figure 1: Classical scaling solution to representing 28 world cities on
a two dimensional map, given only their intercity distances.

7

9

9

9
4

11

9

7

1

7

9

1

9

1

1

4

9

9

1
1

7

1

7
7

7

5
1

4

29
7
47

3

2

3

49

4

3

58
7

88

2

4

6

5

8

5

8

4

5

63

6

3

88

3

4

2

8

5

6

6

5

38

6

3

5
3

6

8

2

6
2

3

0

5

2

65
6

4

2

0

2

2

0

0
0

0
0

0

0

0

Figure 2: Classical scaling solution to representing digits in two di-
mensions. Note how some digits are more closely clustered together
than others.

3. The points yj , j = 1, . . . P in the m dimensional space are then
gives by the positions y

j
i =

√
λiei

j .

We are given the intercity distances of 28 major cities in the world.Example : intercity
This is therefore a 28×28 dimensional matrix T. The above algorithm
is coded below in Matlab to form a 3 dimensional representation of
the cities.

% Classical Scaling demo : assume that T is given

P = size(T,1);

S=-0.5*(T-repmat(sum(T,1),P,1)./P-repmat(sum(T,2),1,P)./P+repmat(sum(sum(T)),P,P)./P^2);

[V,Lambda] = eigs(S,3);

y = V*sqrt(Lambda);

plot3(y(:,1),y(:,2),y(:,3),’.’); rotate3d

The result is given in fig(1) where we have plotted only two of the
three dimensions. Note how the representation is roughly correct
from our experience of where cities are in the world.

We can also use classical scaling to reduce the dimension. I took 10Example : Digit data
examples for each of the ten classes of digit – 100 datapoints therefore
in total. Each digit is represented as a 784 dimensional vector. I
then formed the 100 × 100 dimensional distance matrix T, and used
classical scaling to plot the resulting 3 dimensional reconstructions.
The results are given in fig(2).



Learning from Data 1 : c© David Barber 2001,2002,2003,2004 4

2 Sammon Mapping

The Sammon mapping is a technique more general (and more widely
used) than classical scaling. The idea is very simple. Given a P × P

dissimilarity matrix dij , and a function d(yi,yj) that measures the
dissimilarlity of two vectors yi and yj , we look to place objects in a
space such that their dissimilarities are close to the given dissimilar-
ities dij . An objective function to achieve this is

E =
1

∑

ij dij

∑

i<j

(

dij − d(yi,yj)
)2

dij

(2.1)

We minimise E with respect to the positions yi, i = 1, . . . p. The
division by dij is included in order to encourage the solution to deal
with small dissimilarities accurately. (We do not divide by d2

ij since
then small and large dissimilarities would be treated roughly equally).
In order to train such a model, standard (non-linear) optimisation
techniques can be employed.

For example, we could define dissimilarities as

d(yi,yj) =
(

yi − yj
)4

. (2.2)

Then, given a set of target dissimilarities dij we then need to arrange
the vectors yi to minimize the (weighted) difference between the given
dissimilarities and those measured above. The parameters of the
optimization are therefore the vectors yi themselves.

Strictly speaking, the Sammon “Mapping” is not a mapping, since
it does not yield a function that describes how general points in one
space are mapped to another (it only describes how a limited set of
points is related).

Given points xi in a n-dimensional space (possibly very high dimen-Making a Mapping
sional) to represent them by points yi in a m-dimensional space (pos-
sibly very low dimensional, say 2) in such a way that the separation
between the points in the two spaces is roughly similar. One way to
obtain this mapping is to parameterize the positions of the objects in
the lower dimensional space

y = f (x;W) (2.3)

The distance then between two mapped points is a function of the
parameters of the mapping W. The optimal parameters can then be
found by optimization. The method Neuroscale is one such procedure.

3 A word of warning

It can be that very high dimensional datasets appear to lie on ring
when plotted using visualisation methods. It may well be that the
data really does have this kind of structure. However, in high di-
mensions, the distance matrix (between every pair of points) will be
dominated by those points that are furthest apart. This will give the
impression that most points are a long way from each other, and a
ring or circular type two dimensional representation will likely be the
visualisation solution. One should therefore bear in mind that global
topological constraints on the data are unlikely to be accurately rep-
resented by these visualisation procedures, and one should be wary
of reading too much into the precise structure of the visualisation.

4 Just for interest ...

Here we briefly describe the mathematics behind the solution of the
Classical Scaling. If we consider a single element of the distance
matrix, we have

Tab = xa · xa − 2xa · xb + xb · xb (4.1)



Learning from Data 1 : c© David Barber 2001,2002,2003,2004 5

For convenience, let us define a matrix

Xij = xi
j (4.2)

Furthermore, define the matrix

E = XXT (4.3)

Then we can express one element of T as

Tab = Eaa − 2Eab + Ebb (4.4)

If it were not for the terms Eaa and Ebb, life would be easy since, in
that case, we would have a known matrix, T expressed as the outer
product of an unknown matrix, X which would be easy to solve. What
we need to do therefore is to express the unknown matrix elements
Eaa and Ebb in terms of the known matrix T . In order to do this,
we make the following extra assumption – the data has zero mean,
∑

a xa
i = 0. Clearly, this does not affect the solution since it is only

defined up to an arbitrary shift. In that case,
∑

a Eab =
∑

ai xa
i xb

i =
0. Hence,

∑

a

Tab =
∑

a

Eaa − 2
∑

a

Eab + PEbb (4.5)

=
∑

a

Eaa + PEbb (4.6)

This means that we could express Ebb in terms of T , if only we knew
what

∑

a Eaa is. But this can also be obtained by now summing over
b:

∑

ab

Tab = P
∑

a

Eaa + P
∑

b

Ebb (4.7)

= 2P
∑

a

Eaa (4.8)

This means

PEbb =
∑

a

Tab −
∑

a

Eaa (4.9)

=
∑

a

Tab −
1

2P

∑

ab

Tab (4.10)

so that

Tab =
1

P

∑

a

Tab −
1

P 2

∑

ab

Tab +
1

P

∑

b

Tab − 2Eab (4.11)

In other words, we can write

[

XXT
]

ab
= −1

2

(

Tab −
1

P

∑

a

Tab +
1

P 2

∑

ab

Tab −
1

P

∑

b

Tab

)

(4.12)
The right hand side are elements of a now known matrix, T ′, for
which we can find an eigen-decomposition

T ′ = V ΛV T (4.13)

where V is an orthogonal matrix and Λ is diagonal matrix containing
the eigenvalues. Since each column of T ′ sums to zero, this matrix
has at most rank P − 1. A solution for the data position is given by
taking the first r columns of V Λ

1

2 , where r is the rank of T ′. This
means that if we have P vectors xµ, µ = 1, . . . , P based only on the
Euclidean square distances between them, we can reconstruct a set
of P objects in a P − 1 dimensional space that has exactly the same
distance structure.

If we wish to look for lower dimensional approximate reconstructions
(in the sense that the distance matrix in the lower dimensional space
will not exactly match the given distance matrix T) , we can simply

take those columns of V Λ
1

2 corresponding to the largest eigenvalues
of T ′.


