Data Mining and Exploration

Spring 2019

Lecturer: Arno Onken Email: aonken@inf.ed.ac.uk

Institute for Adaptive and Neural Computation

School of Informatics

THE UNIVERSITY of EDINBURGH

Edinburgh, 17th January 2019

Logistics (1)

- Course website: <u>tinyurl.com/ztb675b</u>
- Lecturer office hours: Tuesdays 14-16 IF 2.27A
- For questions and answers, please use Piazza: <u>tinyurl.com/ycmht6xh</u>
- TA: Benedek Rózemberczki <u><benedek.rozemberczki@ed.ac.uk></u>
- Labs:
 - Weeks 2-5
 - Appleton Tower, room 6.06
 - Group 1:
 - Wednesdays: 09:00 10:50
 - Demonstrator: Miruna-Adriana Clinciu
 - Group 2:
 - Wednesdays: 11:10 13:00
 - Demonstrator: Jennifer Williams

Logistics (2)

- Presentations:
 - Poster presentations on research papers during second half of the course
 - Potential papers listed on the course website
 - Poster printing deadline for <u>everyone</u>: 26 February 2019
- Mini-project:
 - Apply data mining methods to a real dataset
 - List of potential datasets on the course website
 - Project report will be assessed
- Course grade:
 - 50% exam
 - 35% mini-project
 - 15% poster presentation

Data

Definition of <u>Data</u> from the Oxford Dictionary:

- Facts and statistics collected together for reference or analysis
 - The quantities, characters, or symbols on which operations are performed by a computer, which may be stored and transmitted in the form of electrical signals and recorded on magnetic, optical, or mechanical recording media
 - Things known or assumed as facts, making the basis of reasoning or calculation.

Source: https://commons.wikimedia.org/wiki/File:DARPA_Big_Data.jpg

Source: https://commons.wikimedia.org/wiki/File:BigData_2267x1146_white.png

Data Analysis - Data Mining

Data Analysis: Inspect, transform and model data to discover useful information

Source: https://commons.wikimedia.org/wiki/File:J-psi_p_pentaquark_mass_spectrum.svg

Server Farm at CERN

Source: https://commons.wikimedia.org/wiki/File:CERN_Server_03.jpg

Data Mining: Particular data analysis technique; extraction of patterns and knowledge from large amounts of data for predictive rather than descriptive purposes

Exploratory Data Analysis

Exploratory Data Analysis (EDA) is a tradition of data analysis to avoid wrong interpretations of suggestive results

EDA emphasises:

- Graphic representation of the data
- Understanding of the data structure
- Robust measures, re-expression and subset analysis
- Tentative model building in an iterative process of model specification and evaluation
- General scepticism and flexibility with respect to the choice of methods

EDA: Graphic Representation of the Data

Source: https://commons.wikimedia.org/wiki/File:MultivariateNormal.png

Source: https://seaborn.pydata.org/_images/seaborn-violinplot-2.png

EDA: Understanding of the Data Structure

EDA: Robust Measures

EDA: Tentative Model Building

Data Analysis Process

Course Content

Purpose of Particular Course Elements

Lecture material and computer labs

- Numerical data descriptions and pre-processing (today)
 - Establish common language
 - Highlight importance of simple measures
- In depth Principal Component Analysis (lectures 2-3)
 - Describe important method in all its aspects
- Dimensionality reduction (lectures 3-4)
 - Closely related techniques
- Predictive modelling and generalization (lecture 5)
 - Round off data analysis process
- Poster sessions
 - Train presentation of research results in the style of an academic conference
 - Exposure to wide range of topics
- Mini-projects
 - Full data analysis process

Positive Skewness

Fourth Power

Uncorrelated and Dependent

Source: https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient

Scatter Plot

Histogram

Kernel Density Plots

Box Plot

Source: https://en.wikipedia.org/wiki/Box_plot

Violin Plot

Source: https://en.wikipedia.org/wiki/violin_plot