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Motivation

Methodology and Data

Analysis

+ Traditional Automatic Speech Recognition (ASR)
systems are complex with many moving parts:
acoustic model, language model, lexicon, etc.
* End-to-end ASR maps acoustics directly to text,
jointly optimizing for the recognition task
+ End-to-end models do not require explicit
phonetic supervision (e.g. phonemes)
= Research questions:
* Do end-to-end models implicitly learn
phonetic representations (“g” in "bought”)?
* Which components capture more phonetic
information?
* Do more complicated ASR models learn
better representations for phonology?

* Methodology * Data

* Train ASR model on transcribed speech * ASR training: LibriSpeech,

» Extract features from the pre-trained model on a 1000 hours of read speech
supervised dataset with phonetic segmentation * Frame classifier: TIMIT, time

segmentation of phones

s

Utterances 3,692 400 192

+ Train a simple classifier on a frame classification
task: predict phones using the extracted features

« Classifier

* One hidden layer, dropout, ReLU, softmax

Frames 988K 108K 50K

* Adam optimizer, cross-entropy loss

Results

ASR Model

= DeepSpeech2 (Amodei et al. 2017):
* Map spectrograms to characters (or blanks)
+ Stack of CNNs and RNNs

Lo e i

1 cnnl 161 41x11
2 cnn2 41x11 21x11
3 rnnl 1312 1760
4 rmn2 1760 1760
5 rn3 1760 1760
6 rnnd 1760 1760
7 ran5 1760 1760
8 rnné 1760 1760
9 rmn? 1760 1760
10 fc 1760 29

* CTC loss (Graves 2006)

+ Map spectrograms x to characters / by
considering all possible alignments m
3
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* Main results {with steps in cnn1 and cnn2)

* Convlimproves the input
representation, but conv2 degrades it
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* RNN layers initially improve, then drop

> Higher layers capture more global
information like dependencies between 2 -

characters (e.g. “bought”)

+ Similar trends in different configurations e

(layers, phone classes, input futures)
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* Model complexity
+ Effect of strides

* Similar overall trend

* LSTM layer representations are better
than RNN, but the respective conv layers
are worse

* Deeper model has better WER (12 vs 15)
but worse representations for phonology

* Less spiky shape without strides,
possibly thanks to higher time resolution
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+ Effect of blank symbols
* With strides, better representations at blanks

* Without strides, better representations at non-

blanks
Frame Classification Accuracy per CTC prediction
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 Clustering representations from different layers

ez

* Input: good separation ,:.'-‘.j T4 e d
* conv2: no clear groups
« rnn5: better separation

Conclusion

* End-to-end CTC models learn substantial phonetic
information

* Phonetic information persists until mid-layers, but the
top layers loose phonetic information

* Separability in vector space corresponds to
representation quality
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