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Chapter 1

First steps in exploratory data
analysis

This chapter is about the first steps of exploratory data analysis. It is assumed
that we have available n data points x1, . . . ,xn each containing d attributes and
that the data have been transformed to numbers. Each data point xi thus is a d
dimensional vector. We first explain ways to describe any of the d attributes in
isolation and then methods to describe the joint behaviour of two attributes at a
time. This is followed by some elements of preprocessing for further analysis of
the data.

1.1 Distribution of single variables

We are here concerned with the properties of single attributes, e.g. the 10-th
coordinate of the multivariate data x1, . . . ,xn. By extracting the coordinate of
interest from each data point xi, we obtain the univariate data x1, . . . , xn that
we will describe using graphs or numerical summaries.

1.1.1 Numerical summaries

Summaries that characterise the typical value (location), the variability (scale),
as well as symmetry and tail-behaviour (shape) of the data are presented.

Location

The perhaps simplest summary is the average value m of the data

m =
1

n

n∑
i=1

xi. (1.1)

It is a measure of the typical or central value of the data. We also say that
it measures the “location” of the data. The average value is further called the
sample mean.

Assuming that the data were drawn from a random variable x with probability
density function p(.), the average value m of the data is an estimate of the mean
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or expected value of x,

E(x) =

∫
ξp(ξ)dξ. (1.2)

There are other ways to estimate E(x) or to measure the location of the data.
The sample median is defined to be the centre of the data: equal proportions

of the xi lie above and below the median. It can be computed by ordering the xi
from small to large and then taking the middle value. Let x(i) denote the ordered
data, i.e.

x(1) ≤ x(2) ≤ · · · ≤ x(n), (1.3)

the median is then given by

median(x1, . . . , xn) = median(xi) =

{
x((n+1)/2) if n is odd
1
2(x(n/2) + x(n/2+1)) if n is even

(1.4)

In contrast to the sample mean, the sample median is robust to outliers. Assume
that a data point is recorded as xi+δ rather than as xi because of a malfunction of
the measurement device. The average then changes from m to m+δ/n, which can
be arbitrarily large, while the sample median changes at most to a neighbouring
data point. Let, for example, the ordered data be(

1 1 3 3 5 7 9 11 18 20
)

(1.5)

The sample average is 7.8 while the median is (5 + 7)/2 = 6. If the data point
20 gets wrongly recorded as 200, the mean changes to 25.8 while the median
stays the same. If 7 changes to 7000, the sample mean is 707.1 while the median
changes only from 6 to 7.

Another measure of the location of the data that is more robust than the
average is the trimmed average. It is the average of the data when leaving out
the smallest and largest k < n/2 values,

1

n− 2k

n−k∑
i=k+1

x(i). (1.6)

If k = 0, the trimmed average is the usual sample average. As k approaches n/2,
the trimmed average approaches the median.

The sample average (mean) has the advantage that it can be easily computed
in parallel for all dimensions of the multivariate data xi. Let m1, . . . ,md be the
average values of the different dimensions of xi computed as in (1.1). We then
have

m =


m1

m2
...
md

 =
1

n

n∑
i=1

xi. (1.7)

The sample mean m can be written as a matrix-vector multiplication. While
computationally not an efficient way to compute m, it is helpful in analytical
work. Let X be the d× n data matrix with the xi in its columns,

X = (x1, . . . ,xn). (1.8)

Data Mining and Exploration, Spring 2017



1.1 Distribution of single variables 3

We can then write m as

m = X
1

n
1n, (1.9)

where 1n is a column vector containing n ones, i.e. 1> = (1, · · · , 1)> (see e.g.
Section A.3).

Scale

A basic way to measure the scale of the data is to determine how much, on
average, they deviate from the average value,

v =
1

n

n∑
i=1

(xi −m)2 =
1

n

n∑
i=1

x2
i −m2. (1.10)

This measure is known as the sample variance. It is an estimator of the variance
of the random variable x,

V(x) =

∫
(ξ − E(x))2p(ξ)dξ = E(x2)− E(x)2. (1.11)

The variance is the 2nd central moment of x – the mean is the first moment
while E(x2) is the second moment. Other estimators of the variance divide by
n − 1 rather than n. Note that both the variance and the sample variance have
different units than the data. Hence, it is often better to indicate their square
root. The square root of the (sample) variance is called the (sample) standard
deviation.

Because of the squaring, the sample variance is more affected by outliers than
the sample mean. The median can be used to obtain a more robust measure of
the scale of the data: instead of measuring the average squared deviation from
the average, we measure the median absolute deviation from the median (MAD),

MAD = median (|xi −median(xi)|) (1.12)

This measure has the same units as the xi themselves.
The range x(n)− x(1), i.e. the difference between the largest and the smallest

value, is another measure of the scale the data, but it is not robust. A more
robust quantity is the difference between the upper and lower end of what makes
the central 50% of the data. This is called the interquartile range (IQR). Half of
the data are between x(dn/4e) and x(d3n/4e) so that

IQR = x(d3n/4e) − x(dn/4e), (1.13)

where d3n/4e means 3n/4 rounded up to the next higher integer. The number
x(dn/4e) is called the first quartile and often denoted by Q1, and x(d3n/4e) = Q3 is
the third quartile. The second quartile Q2 is the median. For example,

(1 1 3
Q1

3 5
Q2

7 9 11
Q3︸ ︷︷ ︸

IQR

18 20), (1.14)

so that IQR = 8, while the sample standard deviation is
√
v = 6.76 and MAD = 4.
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The median and the quartiles are examples of sample quantiles. The α-th
sample quantile qα is roughly the data point with a proportion α of the ordered
data x(i) to its left, i.e. qα ≈ x(dnαe). For example, the minimum and the
maximum are the 0 and 1 quantiles q0 and q1; the median the 0.5 quantile q0.5

and the quartiles Q1 and Q3 are equal to q0.25 and q0.75 respectively. Like for the
median, quantiles are often computed by interpolation if αn is not an integer.

Shape

Skewness is a quantity that measures the symmetry of the data. For a random
variable x, skewness is defined as its third standardised moment,

skew(x) = E

(x− E(x)√
V(x)

)3
 = E

[(
x− µ
σ

)3
]
, (1.15)

with mean µ = E(x) and standard deviation σ =
√
V(x). The subtraction of

the mean and the division by the standard deviation normalises x to have zero
mean and unit variance, which “standardises” x by removing the location and
scale information before taking the third power. Removal of the scale information
eases the comparison of skewness between different random variables.

A random variable that is symmetric around its mean has skewness zero. As

skew(x) =

∫ (
ξ − µ
σ

)3

p(ξ)dξ (1.16)

=

∫
ξ≤µ

(
ξ − µ
σ

)3

p(ξ)dξ︸ ︷︷ ︸
≤0

+

∫
ξ>µ

(
ξ − µ
σ

)3

p(ξ)dξ︸ ︷︷ ︸
≥0

(1.17)

skewness is positive if x tends to take on values much larger than the mean (heavy
upper tails). Conversely, skewness is negative in case of heavy lower tails. For
a data set x1, . . . , xn, skewness can be measured by replacing the expectations
with sample averages, as we have done in case of the mean and variance. The
measure is then called sample skewness.

Due to the third power, sample skewness is sensitive to outliers. A more
robust measure can be obtained by means of the quartiles,

Galton’s measure of skewness =
(Q3 −Q2)− (Q2 −Q1)

Q3 −Q1
. (1.18)

The denominator is the interquartile range and normalises the skewness measure
like the standard deviation in (1.15). By definition of the quartiles both Q3 −
Q2 and Q2 − Q1 are positive. The first term measures the range of the third
quarter while the second term measures the range of the second quarter. Galton’s
skewness thus computes the difference between the ranges of the two quarters in
a normalised way. It is positive if the range of the third quarter is larger than
the range of the first quarter, and conversely. Figure 1.1 shows an example.

The fourth standardised moment is called the kurtosis,

kurt(x) = E

[(
x− µ
σ

)4
]
. (1.19)

Data Mining and Exploration, Spring 2017
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(b) Zoom

Figure 1.1: Example of positive skewness. The distribution has skewness equal
to 6.18 according to (1.15), its interquartile range is 1.45, and Q3 − Q2 = 0.96
while Q2 − Q1 = 0.49, so that Galton’s measure of skewness is positive. The
black dashed line indicates the mean, while the three red lines show from left to
right Q1, Q2, and Q3.

Due to the fourth power, kurtosis is insensitive to the symmetry of the distribution
of x. It measures how often x takes on values that are considerably larger or
smaller than its standard deviation; it is said to measure how heavy the tails of
the distribution of x are. Figure 1.2 shows the function u 7→ u4. It is relatively
flat for −1 < u < 1 so that kurtosis basically ignores the behaviour of x within one
standard deviation around its mean. The function then grows rapidly and values
larger than two standard deviations away from the mean contribute strongly to
the value of kurtosis.

A Gaussian random variable with probability density function

p(ξ) =
1√

2πσ2
exp

(
−(ξ − µ)2

2σ2

)
(1.20)

has kurtosis equal to three. This is often taken as a reference value, and people
report the excess kurtosis,

excess kurtosis(x) = kurt(x)− 3. (1.21)

Positive excess kurtosis indicates that the random variable has heavier tails than
a Gaussian random variable. This means that it produces large values more often
than a Gaussian. Negative excess kurtosis, on the other hand, indicates a random
variable with fewer and less extreme values than a Gaussian. Figure 1.3 shows
examples. Both (excess) kurtosis and skewness can thus be taken as measures of
non-Gaussianity of the data.

Kurtosis can be computed by replacing the expectation with a sample average,
or more robustly, by means of quantiles,

robust kurtosis(x) =
(q7/8 − q5/8) + (q3/8 − q1/8)

q3/4 − q1/4
. (1.22)

Data Mining and Exploration, Spring 2017
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Figure 1.2: The figure shows the function u 7→ u4 that occurs in the definition of
the kurtosis. It is relatively flat on (−1, 1) and grows quickly for values outside
the interval.
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Figure 1.3: Probability density functions (pdfs) with zero, negative, and posi-
tive excess kurtosis. The curves shown are correspondingly the Gaussian (blue),
uniform (green), and Laplace (red) probability density functions.

The denominator is the interquartile range, and the numerator measures the
length of the upper and lower tails. Further robust measures of kurtosis and
skewness are discussed by Kim and White (2004).

1.1.2 Graphs

Graphs often allow us to see interesting patterns in the data more easily than
numerical summaries.

Histogram

The histogram is among the most used graphs. To construct the histogram, we
count how many times certain values occur among the xi. If the xi can only take
on finitely many values v1, . . . vk, the histogram plots the frequency of occurrence

Data Mining and Exploration, Spring 2017
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f1, . . . , fk of each value, i.e.

fj =
nj
n
, nj =

n∑
i=1

1{vj}(xi), 1{vj}(ξ) =

{
1 if ξ = vj

0 otherwise
(1.23)

The sum
∑n

i=1 1{vj}(xi) equals the number of times the value vj occurs in the
data set. Here, the values vj do not need to be numerical.

If the xi are real numbers, we can quantise them so that they take on only
k different values, and then proceed as above. The usual way to do this is via
binning: We form k bins B1, . . . , Bk and count the number of data points nj that
fall into each bin Bj ,

nj =
n∑
i=1

1Bj (xi), 1Bj (ξ) =

{
1 if ξ ∈ Bj
0 otherwise

(1.24)

We can then compute the frequencies fj = nj/n as before. The bins are often
chosen to have equal width h. For equal bin sizes the bins Bj are

B1 = [L,L+ h), B2 = [L+ h, L+ 2h), · · · , Bk = [L+ (k − 1)h, L+ kh].
(1.25)

They are centred at the locations L + h/2 + jh. The starting value L, the bin-
width h and the number of bins k are parameters that the user needs to choose.
One may choose L to correspond to the smallest value of all xi and given k, the
bin-width h such that the bins cover the whole range of the data.

Figure 1.4(a) shows an example. We can see that different starting values L
may lead to differently looking histograms.

The frequencies can further be converted to probability density estimates
by dividing them by the length of the bins. The estimated probability density
function p̂(x) is piecewise constant.1 For equal bin sizes h, we have

p̂(x) =
fj
h

=
nj
nh

if x ∈ Bj . (1.26)

This is really just a re-normalisation of the frequencies, but the interpretation is
a bit different. We can think that we first discretise x to equal the bin centre of
Bj , then count the number of data points nj in its neighbourhood of size h, and
finally normalise the counts by nh to convert them to a density.

Kernel density estimate

A critique of density estimates like (1.26) is that they depend on the starting point
L, and that they are not smooth even if the data were drawn from a distribution
with a smooth probability density function. Kernel density estimation addresses
these two shortcomings of histograms. It still requires the specification of h,
which is called the bandwidth in kernel density estimation.

1We have here overloaded the symbol x to refer to both the random variable and the value
it may take. This is done very often, and also in this lecture without any further warning.
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Figure 1.4: Describing the scalar data by histograms. The edges of the bars
correspond to the edges of the bins used for the histogram. (a) and (b) show
histograms with different starting vales L.

The dependency on the starting point L can be removed by not discretising
x in (1.26). We just directly count the number of points in the neighbourhood of
x, which can be done by computing

n(x) =

n∑
i=1

uh(x− xi), uh(ξ) =

{
1 if ξ ∈ [−h

2 ,
h
2 ]

0 otherwise.
(1.27)

The function uh(.) is called the rectangular or the boxcar function. Normalising
the counts as before yields

p̂(x) =
1

n

n∑
i=1

1

h
uh (x− xi). (1.28)

This quantity is a kernel density estimate, and the function 1/h uh (.) is called
the boxcar kernel.

When we use the boxcar kernel, we stop counting data points as soon as they
are further than a h/2 distance away from x. In a sense, the data points are
assigned zero weight if outside the neighbourhood and unit weight when inside.
Instead of this binary weight assignment, it is often more reasonable to assign
to each data point a weight that decreases smoothly with the distance from the
query point x. This can be done by replacing the boxcar kernel with another
kernel Kh(.) so that the kernel density estimate is

p̂(x) =
1

n

n∑
i=1

Kh(x− xi). (1.29)

The kernel Kh(.) must integrate to one for p̂(x) to integrate to one. A popular
choice for Kh(.) is the Gaussian kernel

Kh(ξ) =
1√

2πh2
exp

(
− ξ2

2h2

)
. (1.30)

Other kernels are plotted in Figure 1.5. Figure 1.6 shows the densities estimated
by rescaling the histogram, with the boxcar kernel, and with the Gaussian kernel.
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Figure 1.5: Kernels used in kernel density estimation. Figure from https:

//en.wikipedia.org/wiki/Kernel_(statistics)
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(c) Gaussian kernel

Figure 1.6: Estimating the probability density function from (a) the histogram
or (b-c) via kernel density estimation.
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Figure 1.7: Boxplot and comparison to the Gaussian probability density function.
Figure from https://en.wikipedia.org/wiki/Box_plot

Boxplot

The boxplot visualises several key quantile-based summaries in a single graph.
Figure 1.7 shows the boxplot (top) and maps the summaries to the corresponding
areas of the Gaussian distribution. Violin plots are a modification that combine
quantile information with a kernel density estimate (Hintze and Nelson, 1998).

1.2 Joint distribution of two variables

The previous section described the behaviour of single variables in isolation. It
was concerned with summarising and estimating the probability distribution of
a single attribute of the multivariate data. This section is about numerical sum-
maries and graphs for describing the joint probability distribution of two vari-
ables.

1.2.1 Numerical summaries

We present measures that quantify the tendency of two variables to vary together.
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1.2 Joint distribution of two variables 11

Linear relationship: covariance and correlation

Let x and y be two random variables with mean µx and µy, respectively. The
covariance cov(x, y) measures the strength of association between them. It is
defined as

cov(x, y) = E [(x− µx)(y − µy)] = E (xy)− µxµy. (1.31)

From the definition, we have cov(x, x) = V(x) and cov(ax + b, y) = a cov(x, y).
The value of the covariance thus depends on the scale of x and y.

A measure of association that does not depend on their scale is the correlation
coefficient ρ,

ρ(x, y) =
cov(x, y)√
V(x)V(y)

. (1.32)

Denoting the standard deviation of x and y by σx and σy, the correlation coeffi-
cient can be written as

ρ(x, y) = E
[(

x− µx
σx

)(
y − µy
σy

)]
, (1.33)

which means that x and y are standardised to zero mean and unit variance
before the expectation is taken. If ρ is positive, x > µx and y > µy tend to
co-occur, and x and y are said to be positively correlated. If ρ < 0, x and y
are negatively correlated. If ρ = 0, the random variables are uncorrelated, and
E(xy) = E(x)E(y).

Assume y = ax+b, where a 6= 0 and b are some constants. Then µy = aµx+b
and the variance of y is

V(y) = E((y−µy)2) = E((ax+b−aµx−b)2) = E(a2(x−µx)2) = a2 V(x). (1.34)

The covariance is

cov(x, y) = E [(x− µx)(y − µy)] = E [(x− µx)(ax+ b− aµx − b)] = aV(x)
(1.35)

so that

ρ(x, y) =
aV(x)√

V(x)a2 V(x)
=

a√
a2

=

{
1 if a > 0

−1 if a < 0
(1.36)

That is, if y is linearly related to x, the correlation coefficient is one for positive
slopes a, and minus one for negative slopes. The magnitude of a does not affect
the value of ρ.

What does affect the value of ρ? Let y = x+n where x and n are uncorrelated.
We then have V(y) = V(x) +V(n), which we denote by σ2

x + σ2
n, and cov(x, y) =

V(x) = σ2
x, so that

ρ(x, y) =
σ2
x√

σ2
x(σ2

x + σ2
n)

=
1√

1 + σ2
n
σ2
x

. (1.37)

Hence, |ρ| becomes small if σ2
n dominates σ2

x, that is, if the so-called signal-to-
noise ratio σ2

x/σ
2
n is small. Importantly, ρ ≈ 0 only means that x and y are not

linearly related. It does not mean that x and y are not related, see Figure 1.8.
The covariance and correlation coefficient can be estimated from n tuples

(xi, yi), that is from data (x1, y1), . . . , (xn, yn), by replacing the expectation with
the sample average as we have done before.
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Figure 1.8: Correlation coefficients for different data sets. Figure from
https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_

coefficient.

Covariance matrix

For a random vector x = (x1, . . . , xd)
>, the covariance matrix is the d×d matrix

C = V(x) that contains all covariances of the variables,

C =


cov(x1, x1) cov(x1, x2) · · · cov(x1, xd)
cov(x2, x1) cov(x2, x2) · · · cov(x2, xd)

...
...

...
cov(xd, x1) cov(xd, x2) · · · cov(xd, xd).

 (1.38)

Since cov(xi, xj) = cov(xj , xi), C is symmetric, and since cov(xi, xi) = V(xi),
the elements on the diagonal are the variances.

Let µ be the d-dimensional vector with the means of the random variables
xi. We can then write C as

C = E
(
x− µ)(x− µ)>

)
. (1.39)

This follows immediately from the properties of the outer product ab> between
two vectors a and b, see e.g. Section A.2. Indeed, (x − µ)(x − µ)> is a d × d
matrix where the (i, j)-th element is (xi − E(xi))(xj − E(xj)). Its expectation is
hence cov(xi, xj). By linearity of expectation

w>Cw = E

w>(x− µ)︸ ︷︷ ︸
scalar

(x− µ)>w︸ ︷︷ ︸
scalar

 = E
(

(w>(x− µ))2
)
≥ 0, (1.40)

which means that C is a positive semi-definite matrix. It thus has an eigenvalue
decomposition C = UΛU>, where Λ = diag(λ1, . . . , λd) is a diagonal matrix
containing the eigenvalues λi ≥ 0, and U is an orthogonal matrix with the eigen-
vectors as columns (see e.g. Appendix A for a linear algebra refresher). The
total variance of the d random variables xi is the sum of all eigenvalues. With
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the definition of the trace a matrix, see e.g. (A.6), we have

d∑
i=1

V(xi) = trace(C) (1.41)

= trace(UΛU>) (1.42)

(A.8)
= trace(ΛU>U) (1.43)

= trace(Λ) (1.44)

=
d∑
i=1

λi, (1.45)

where we have used that, for an orthogonal matrix U , U>U is the identity
matrix.

If x has covariance matrixC, the linearly transformed random variableAx+b
has covariance matrix ACA>. This is due to the linearity of expectation,

V(Ax+ b) = E
[
(Ax+ b− E(Ax+ b))(Ax+ b− E(Ax+ b))>

]
(1.46)

= E
[
(Ax− E(Ax))(Ax− E(Ax))>

]
(1.47)

= E
[
(A(x− E(x)))(A(x− E(x)))>

]
(1.48)

= E
[
A(x− E(x))(x− E(x))>A>

]
(1.49)

= AE
[
(x− E(x))(x− E(x))>

]
A> (1.50)

= ACA>. (1.51)

The correlation matrix K is the d×d matrix with all correlation coefficients. The
correlation coefficient is essentially the covariance between two random variables
that are standardised to unit variance (and zero mean), which can be achieved by
the linear transformation D−1/2(x−µ) where D contains the diagonal elements
of C, i.e. D = diag(V(x1), . . . ,V(xd)). We thus have

K = D−1/2CD−1/2. (1.52)

By construction, the diagonal elements of K are all one. Both the correlation
matrix and the covariance matrix can be computed from data x1, . . . ,xn by
replacing the expectations with sample averages. In Section 1.3.2, we present a
compact matrix expression.

If the dimension d is not too large, we can just display the numerical values
of the covariance or correlation matrix. But for large d, this is not helpful. For
large dimensions, options are

• visualising C or K as an d× d image with suitably chosen colour codes,

• summarising the distribution of the variances and correlation coefficients by
any of the techniques from the previous section, e.g. histograms or kernel
density estimates,

• doing principal component analysis for a more in-depth analysis (see Chap-
ter 2).
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Figure 1.9: Measuring nonlinear relationships between two variables. The linear
correlation coefficient is small in both (a) and (b) The correlation of the absolute
values, however, captures the relation between x and y. (a) ρ(|x|, |y|) = 0.93, (b)
ρ(|x|, |y|) = 0.68.

Nonlinear relationships

A simple way to measure possible nonlinear relationships between two random
variables x and y is to compute their covariance or correlation after transforming
them nonlinearly, i.e. to compute

ρ(g(x), g(y)) =
cov(g(x), g(y))√
V(g(x))V(g(y))

(1.53)

for some nonlinear function g.

Figure 1.9 shows two examples. In Figure 1.9(a) there is a clear functional
relation between x and y but the (linear) correlation coefficient is −0.15, wrongly
indicating a negative correlation between x and y. Computing the correlation
between the absolute values |x| and |y|, however, yields a correlation coefficient
of 0.93. In Figure 1.9(b), the variance of y depends on the magnitude of x. The
linear correlation is practically zero while the absolute values have a correlation
coefficient of 0.68.

Different nonlinearities g can be used to measure different properties of the
data. The absolute value, for example, can be used to measure variance depen-
dencies. And to measure whether x and y are monotonically related, one can
correlate the ranks of the data points instead of their actual value. The latter
quantity is known as Spearman’s rank correlation coefficient.

1.2.2 Graphs

The graphs in Figure 1.9 are known as scatter plots. Each bubble corresponds
to a data point. The scatter plot is one of the most used techniques to visualise
the distribution of two variables. Colouring the bubbles and changing their size
enables the visualisation of further dimensions or class labels.

Other graphs that are being used are two-dimensional extensions of the his-
togram and the kernel density estimator. For random vectors, we can show these
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kind of graphs for all (unique) pairwise combinations. But as the dimension
grows, the plots become impractical. In Chapter 3, methods for dimensionality
reduction are presented that can be used to visualise high-dimensional data in
the plane.

1.3 Simple preprocessing

Preprocessing refers to various operations that need to be performed in order to
prepare the data for further analysis. We here discuss simple methods for outlier
detection and data standardisation.

1.3.1 Simple outlier detection

An outlier is a data point that seems unusual compared to others. This is a vague
definition, which reflects the various possible causes for outliers.

An outlier can be due to an error in the data gathering stage, for example
because a measurement device did not work properly (“bad data”). A data point
may, however, also appear unusual because it does not conform to the current
assumptions that are made about the data. In the former case, we may omit the
corrupted data points from the analysis, while in the latter case, the data points
contain valuable information that should not be discarded.

Some bad data points can be spotted by the methods above for describing
univariate or bivariate data. If there is a strong difference between the sample
mean and sample median, for example, the cause may be a bad data point.
Quantiles, histograms, and scatter plots further enable one to spot bad data
points. Tukey’s test is a classical method that is based on quartiles and considers
data points outside the range

[Q1 − k IQR, Q3 + k IQR] (1.54)

as outliers. Typically k = 1.5, so that points that fall beyond the whiskers of the
boxplot in Figure 1.7 are considered outliers.

1.3.2 Data standardisation

Data standardisation refers classically to normalising the data to have zero (sam-
ple) mean and unit (sample) variance. It may, however, also refer to other kinds
of transformations to make all variables comparable, for example, transforming
the variables to be in [0, 1]. Common further transformations that are being used
are removing the average value of each single data vector, re-scaling the vector
to unit norm, or computing the logarithm of its values. The transformations are
often problem dependent.

Denote the “raw” data vector by x̃1, . . . , x̃n and the corresponding data ma-
trix by X̃,

X̃ = (x̃1, . . . , x̃n). (1.55)

We next write the removal of the mean (centring) and scaling to unit variance as
matrix operations.
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Centring

Let us denote the average of the x̃i by m and the centred data points by xi, so
that

xi = x̃i −m. (1.56)

Let us further collect all centred data points into the matrix X,

X = (x1, . . . ,xn). (1.57)

We will now see that the centring operation can be written compactly as a matrix
multiplication,

X = X̃Hn, Hn = In −
1

n
1n1

>
n , (1.58)

where In is the n× n identity matrix and 1>n = (1, 1, . . . , 1)> is a vector of ones.
The matrix Hn is called the centring matrix.

This can be seen as follows: From (1.9), we know that we can express the
sample mean m = (m1, · · · ,md)

> as

m =
1

n

n∑
i=1

x̃i = X̃
1

n
1n, (1.59)

Note that mi is the average over all elements in row i of the matrix X̃, i.e.

mi =
1

n

n∑
j=1

(X̃)ij , (1.60)

where (X̃)ij denotes the (ij)-th element of X̃. SinceX is obtained by subtracting
vector m from each column of X̃, we have

X = (x̃1 −m, . . . , x̃n −m) = (x̃1, . . . , x̃n)− (m, . . . ,m) = X̃ − (m, . . . ,m)
(1.61)

The matrix (m, . . . ,m) has n copies ofm as its columns. We can write (m, . . . ,m)
as the outer product m1>n between m and 1n,

m1>n =


m1

m2
...
md

(1 1 · · · 1
)

=


m1 m1 · · · m1

m2 m2 · · · m2
...

...
...

md md · · · md

 = (m, . . . ,m). (1.62)

With m = X̃ 1
n1n, we thus obtain

(m, . . . ,m) = X̃
1

n
1n1

>
n (1.63)

and hence

X = X̃ − (m, . . . ,m) = X̃ − X̃ 1

n
1n1

>
n = X̃(In −

1

n
1n1

>
n ) = X̃Hn, (1.64)
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as claimed in (1.58).
Multiplying X̃ with Hn from the right subtracts the average value of each

row of X̃ from each element in said row, i.e.

(X̃Hn)ij = (X̃)ij −
1

n

n∑
j=1

(X̃)ij . (1.65)

As a side note, multiplyingHn from the left with a column vector a = (a1, . . . , a
>
n )

would subtract the average of all ai from each element of a,

Hna =


a1 − ā
a2 − ā

...
an − ā

 ā =
1

n

n∑
i=1

ai, (1.66)

and hence, multiplying a matrix withHn from the left would subtract the average
of each column from each column of the matrix. In brief, Hn is a projection
matrix that projects vectors on the space orthogonal to 1n (see Section A.6). It
satisfies HnHn = Hn.

Scaling to unit variance

The sample covariance matrix Ĉ for the (raw) data is

Ĉ =
1

n

n∑
i=1

(x̃i −m)(x̃i −m)> (1.67)

=
1

n

n∑
i=1

xix
>
i (1.68)

=
1

n
XX> (1.69)

=
1

n
X̃HnX̃

>. (1.70)

Its diagonal elements are the sample variances. Let us collect them into the
diagonal matrix D. We can then scale the centred data xi to unit variance by
pre-multiplying them with D−1/2. Note that each dimension of the data points
D−1/2xi has now unit variance, but they may still be correlated. In fact, the
(sample) covariance matrix of the rescaled data D−1/2xi is an estimate of the
correlation matrix K in (1.52). Finally, we will later often use C to denote not
only the covariance matrix but also the sample covariance matrix. The context
will make clear which matrix is meant.
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Chapter 2

Principal component analysis

This chapter presents several equivalent views on principle component analysis
(PCA). The two main themes are finding directions in the data space along which
the data are maximally variable, and finding lower-dimensional yet accurate rep-
resentations of the data. We assume that the data have been centred, i.e. that
the sample mean has been subtracted from the data points xi, and that the
corresponding random vector x has zero mean.

2.1 PCA by sequential variance maximisation

We first explain how to find the first principal component direction and then how
to iteratively find the subsequent ones.

2.1.1 First principal component direction

The first principal component direction is the unit vector w1 for which the pro-
jected data w>1 xi are maximally variable, where variability is measured by the
sample variance. Equivalently, we can work with the random vector x and look
for the direction w1 for which the variance of z1 = w>1 x is maximal.

The variance V(z1) can be expressed in terms of the covariance matrix C of
x,

V(z1) = V(w>1 x) = w>1 Cw1, (2.1)

which follows from (1.51) with A = w>1 . The first principal component direction
is thus the solution to the following optimisation problem:

maximise
w1

w>1 Cw1

subject to ||w1|| = 1
(2.2)

The eigenvalue decomposition of C allows us to find a solution in closed form.
Let

C = UΛU>, (2.3)

where U is an orthogonal matrix and where Λ is diagonal with eigenvalues λi ≥ 0
(see Section A.8). We further assume that λ1 ≥ λ2 ≥ · · · ≥ λd. As the columns
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ui of U form an orthogonal basis, we can express w1 as

w1 =

d∑
i=1

aiui = Ua, (2.4)

where a = (a1, . . . , ad)
>. The quadratic form w>1 Cw1 can thus be written as

w>1 Cw1 = a>U>U︸ ︷︷ ︸
Id

ΛU>U︸ ︷︷ ︸
Id

a = a>Λa =

d∑
i=1

a2
iλi, (2.5)

and the unit norm constraint on w1 becomes

||w1||2 = w>1 w1 = a>U>Ua = a>a =

d∑
i=1

a2
i

!
= 1 (2.6)

An equivalent formulation of the optimisation problem in (2.2) is thus

maximise
a1,...,ad

d∑
i=1

a2
iλi

subject to
d∑
i=1

a2
i = 1

(2.7)

As λ1 ≥ λi, i = 2, . . . , d, setting a1 to one and the remaining ai to zero is a
solution to the optimisation problem. This is the unique solution if λ1 is the
largest eigenvalue. But if, for example, λ1 = λ2, the solution is not unique any
more: any a1 and a2 with a2

1 + a2
2 = 1 satisfy the constraint and yield the same

objective. Assuming from now on that λ1 > λi, i = 2, . . . , d, the unique w1 that
solves the optimisation problem in (2.2) is

w1 = U


1
0
...
0

 = u1. (2.8)

The corresponding value of the objective w>1 Cw1 is λ1.
The first principal component direction w1 is thus given by the eigenvector of

the covariance matrix of x that has the largest eigenvalue. The random variable
z1 = w>1 x is called the first principal component of x.

The variance of z1 is equal to λ1 – the largest eigenvalue of C and the maximal
value of the objective in (2.2). We say that λ1 is the variance of x explained by the
first principal component (direction). Since x is assumed centred, the expected
value of z1 is zero,

E(z1) = E(w>1 x) = w>1 E(x)︸ ︷︷ ︸
0

= 0. (2.9)

In practice, we work with the centred data points xi. The projections w>1 xi, i =
1, . . . , n are often called the first principle components too, but also, more pre-
cisely, the first principle component scores. Collecting the centred data points
into the d× n data matrix X,

X = (x1, . . . ,xn), (2.10)
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2.1 PCA by sequential variance maximisation 21

the (row) vector z>1 with all first principle component scores is given by w>1 X.

2.1.2 Subsequent principal component directions

Given w1, the next principal component direction w2 is chosen so that it max-
imises the variance of the projection w>2 x and so that it reveals something “new”
in the data, i.e. something that w1 has not uncovered. This puts a constraint on
w2, and in PCA, the constraint is implemented by requiring thatw2 is orthogonal
to w1.

The second principal component direction is hence defined as the solution to
the optimisation problem:

maximise
w2

w>2 Cw2

subject to ||w2|| = 1

w>2 w1 = 0

(2.11)

As before, we decompose C as UΛU> and write w2 as w2 = Ub. Since w1 = u1,
w>2 w1 equals

b>U>u1 = b>

1
0
...

 = b1 (2.12)

and the constraint w>2 w1 = 0 becomes the constraint b1 = 0. The optimisation
problem in (2.11) can thus be equally expressed as:

maximise
b1,...,bd

d∑
i=1

b2iλi

subject to
d∑
i=1

b2i = 1

b1 = 0

(2.13)

We can insert the constraint b1 = 0 directly into the other equations to obtain

maximise
b2,...,bd

d∑
i=2

b2iλi

subject to
d∑
i=2

b2i = 1

(2.14)

The optimisation problem is structurally the same as in (2.7); now we just opti-
mise over b2, . . . , bd. As λ2 ≥ λi, i = 3, . . . d, an optimal vector b is (0, 1, 0, . . . , 0)>

and hence

w2 = U


0
1
0
...
0

 = u2 (2.15)
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is a solution to the optimisation problem. Furthermore, the value of w>2 Cw2

is λ2. As discussed for the first principle component, this solution is unique if
λ2 > λi, i = 3, . . . d, which we here assume to be the case.

The second principle component direction w2 is thus given by the eigenvector
of the covariance matrix of x that has the second largest eigenvalue. Analogue
to the first principle component z1, the second principle component is z2 = w>2 x
with mean E(z2) = 0 and variance V(z2) = λ2. The principle components are
uncorrelated:

E (z1z2) = E
(
w>1 xw

>
2 x
)

(2.16)

= E
(
w>1 xx

>w2

)
= w>1 E

(
xx>

)
w2 (2.17)

= w>1 Cw2 (2.18)

= u>1 UΛU>u2 (2.19)

=
(
1 0 0 · · ·

)

λ1

λ2

. . .

λd




0
1
0
...

 (2.20)

=
(
λ1 0 0 · · ·

)


0
1
0
...

 (2.21)

= 0. (2.22)

The procedure that we used to obtain w2 given w1 can be iterated to obtain
further principle component directions. Assume that we have already computed
w1, . . . ,wm−1. The m-th principle component direction wm is then defined as
the solution to:

maximise
wm

w>mCwm

subject to ||wm|| = 1

w>mwi = 0 i = 1, . . . ,m− 1

(2.23)

Arguing as before, the m-th principle component direction wm is given by eigen-
vector um that corresponds to the m-th largest eigenvalue of C (assuming that
there are no ties with other eigenvalues). The random variable zm = w>mx is
called the m-th principle component, its variance V(zm) is λm, it is of zero mean
(because x is zero mean), and all principle components are uncorrelated. The
w>mxi, i = 1, . . . , n, are the m-th principle component scores.

The total variance of the zm, m = 1, . . . , k, is said to be the variance explained
by the k principle components. It equals

k∑
m=1

V(zm) =

k∑
m=1

λm. (2.24)

The variance explained by the k principle components is often reported relative
to the sum of the variances of the random variables xi that make up the random

Data Mining and Exploration, Spring 2017



2.2 PCA by simultaneous variance maximisation 23

vector x. The resulting number is the “fraction of variance explained”. With
(1.45), the total variance of x is

d∑
i=1

V(xi) =

d∑
i=1

λi, (2.25)

so that

fraction of variance explained =

∑k
i=1 λi∑d
i=1 λi

. (2.26)

The fraction of variance explained is a useful number to compute for assessing
how much of the variability in the data is captured by the k principle components.

2.2 PCA by simultaneous variance maximisation

We first explain the principle and then show that sequential and simultaneous
variance maximisation yield the same solution.

2.2.1 Principle

In the previous section, the k principle component directions w1, . . . ,wk were
determined in a sequential manner, each time maximising the variance of each
projection. Instead of the sequential approach, we can also determine all di-
rections concurrently by maximising the total variance of all projections, i.e. by
solving the optimisation problem:

maximise
w1,...,wk

k∑
i=1

w>i Cwi

subject to ||wi|| = 1 i = 1, . . . , k

w>i wj = 0 i 6= j

(2.27)

It turns out that the optimal w1, . . .wk from the sequential approach, i.e. the
eigenvectors u1, . . . ,uk, are also solving the joint optimisation problem in (2.27),
so that the maximal variance of all projections is

∑k
i=1 λk. This result may be

intuitively understandable, but there is a subtle technical point: The sequential
approach corresponds to solving the optimisation problem in (2.27) in a greedy
manner, and greedy algorithms are generally not guaranteed to yield the optimal
solution. A proof that simultaneous and sequential variance maximisation yield
the same solution is given below (optional reading).

2.2.2 Sequential maximisation yields simultaneous maximisation∗

As in the sequential approach, we work in the orthogonal basis provided by the
eigenvectors of C, i.e.

wi = Uai, (2.28)
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so that we can write the optimisation problem as

maximise
a1,...,ak

k∑
i=1

a>i Λai

subject to ||ai|| = 1 i = 1, . . . , k

a>i aj = 0 i 6= j

(2.29)

We see that the k vectors ai are required to be orthonormal. They can be
extended by orthonormal vectors ak+1, . . . ,ad so that the matrix

A = (a1, . . . ,ak,ak+1, . . . ,ad) (2.30)

is orthogonal and thus satisfies AA> = Id. This means that the row vectors of
A have norm one,

d∑
j=1

(A)2
ij = 1, (2.31)

and thus that
k∑
j=1

(A)2
ij ≤ 1. (2.32)

Below, we will denote
∑k

j=1(A)2
ij by bi. Note that

∑d
i=1 bi = k since the column

vectors of A have unit norm.

Since Λ is a diagonal matrix, the objective in (2.29) can be written as

k∑
j=1

a>j Λaj =
k∑
j=1

d∑
i=1

(aj)
2
iλi =

k∑
j=1

d∑
i=1

(A)2
ijλi. (2.33)

We now show that
∑k

i=1 λi is the maximal sum that can be obtained by any
set of k orthogonal vectors ai. This proves our claim about the solution of the
optimisation problem in (2.27). We start with re-writing

∑k
j=1 a

>
j Λaj as

k∑
j=1

a>j Λaj =

k∑
j=1

d∑
i=1

(A)2
ijλi (2.34)

=

d∑
i=1

k∑
j=1

(A)2
ij︸ ︷︷ ︸

bi

λi (2.35)

=
d∑
i=1

biλi (2.36)

=

k∑
i=1

biλi +

d∑
i=k+1

biλi (2.37)
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For i > k, λi ≤ λk, as we assume that the eigenvalues are ordered from large to
small. We thus obtain an upper bound for

∑k
j=1 a

>
j Λaj ,

k∑
j=1

a>j Λaj =
k∑
i=1

biλi +
d∑

i=k+1

biλi (2.38)

≤
k∑
i=1

biλi + λk

d∑
i=k+1

bi. (2.39)

We now write
∑d

i=k+1 bi =
∑d

i=1 bi −
∑k

i=1 bi and use that
∑d

i=1 bi = k, so that

d∑
i=k+1

bi = k −
k∑
i=1

bi (2.40)

and hence

k∑
j=1

a>j Λaj ≤
k∑
i=1

biλi + kλk −
k∑
i=1

biλk (2.41)

=

k∑
i=1

bi(λi − λk) + kλk. (2.42)

Since λi−λk ≥ 0 for i ≤ k and 0 ≤ bi ≤ 1 we have bi(λi−λk) ≤ (λi−λk) so that

k∑
j=1

a>j Λaj ≤
k∑
i=1

(λi − λk) + kλk (2.43)

=
k∑
i=1

λi −
k∑
i=1

λk + kλk (2.44)

=
k∑
i=1

λi − kλk + kλk, (2.45)

from where the desired result follows:

k∑
j=1

a>j Λaj ≤
k∑
i=1

λi. (2.46)

The upper bound is achieved if aj is the j-th unit vector, i.e. if a1 = (1, 0, . . .)>,
a2 = (0, 1, 0, . . .)>, . . ., that is, if wi = uj . They are the unique solution if there
are not ties in the first eigenvalues, i.e. if λ1 > · · · > λk > λk+1.

2.3 PCA by minimisation of approximation error

We first explain the principle and then show the equivalence to PCA by variance
maximisation.
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w1

w2

x

Px

Figure 2.1: Orthogonal projection of x onto the subspace spanned by the two
orthonormal vectors w1 and w2. The projection Px can be written as a linear
combination of w1 and w2, and the residual x−Px is orthogonal to both vectors.

2.3.1 Principle

A set of k orthonormal vectors w1, . . . ,wk of dimension d spans a k-dimensional
subspace of Rd denoted by span(w1, . . . ,wk), see Section A.5. Moreover, the
matrix P ,

P =
k∑
i=1

wiw
>
i = WkW

>
k , Wk = (w1, . . . ,wk), (2.47)

projects any vector onto said subspace. This means that we can decompose our
data points xi into elements x̂i = Pxi that belong to span(w1, . . . ,wk) and
“residual” vectors orthogonal to it (see Figure 2.1 and Section A.6). The projec-
tions x̂i are lower dimensional approximations of the xi that can be represented
by the k coordinates w>1 xi, . . . ,w

>
k xi. Equivalently, the random vector x can be

approximated by x̂ = Px =
∑k

i=1wiw
>
i x.

We now ask which subspace yields the approximations with the smallest error
on average? Or equivalently, which subspace yields the smallest expected approx-
imation error? The question can be formulated as the optimisation problem:

minimise
w1,...,wk

E
∣∣∣∣x− k∑

i=1

wiw
>
i x
∣∣∣∣2

subject to ||wi|| = 1 i = 1, . . . , k

w>i wj = 0 i 6= j

(2.48)

We show below that the optimisation problem is equivalent to the optimisation
problem in (2.27), so that the optimal wi are the first k eigenvectors ui of the
covariance matrix of x, where “first k eigenvectors” means the eigenvectors with
the k largest eigenvalues. For this to make sense, it is assumed that the k-th
eigenvalue is larger than the (k + 1)-th eigenvalue.

In other words, the optimal k-dimensional subspace is spanned by u1, . . . ,uk,
the optimal projection matrix is P = UkU

>
k , and the optimal lower dimensional
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representation of x is x̂ = Px. Since

x̂ = UkU
>
k x =

k∑
i=1

uiu
>
i x =

k∑
i=1

uizi (2.49)

the i-th principal component zi = u>i x is the i-th coordinate of x̂ when repre-
sented in the basis u1, . . . ,uk.

2.3.2 Equivalence to PCA by variance maximisation

To prove the equivalence of (2.27) and (2.48), we first write
∑k

i=1wiw
>
i x more

compactly as WkW
>
k x and expand the norm of the approximation error,

||x−WkW
>
k x||2 = (x−WkW

>
k x)>(x−WkW

>
k x) (2.50)

= x>x− 2x>WkW
>
k x+ x>WkW

>
k Wk︸ ︷︷ ︸
Ik

W>
k x (2.51)

= x>x− x>WkW
>
k x (2.52)

Using again that WkW
>
k =

∑k
i=1wiw

>
i , we obtain

||x−WkW
>
k x||2 = x>x− x>

(
k∑
i=1

wiw
>
i

)
x (2.53)

= x>x−
k∑
i=1

(x>wi)(w
>
i x) (2.54)

= x>x−
k∑
i=1

w>i xx
>wi (2.55)

and the expected approximation error is

E ||x−WkW
>
k x||2 = E(x>x)− E

(
k∑
i=1

w>i xx
>wi

)
(2.56)

= E(x>x)−
k∑
i=1

w>i E(xx>)wi (2.57)

due to the linearity of the expectation. As we assume that the expected value
E(x) is zero, due to the centring, we have C = E(xx>) and

E ||x−WkW
>
k x||2 = E(x>x)−

k∑
i=1

w>i Cwi. (2.58)

Since E(x>x) is a constant, minimising the expected approximation error is
equivalent to maximising

∑k
i=1w

>
i Cwi, which is the total variance of the pro-

jections w>i x and the objective in (2.27). The constraints in (2.48) and (2.27)
are also the same so that the two optimisation problems are equivalent.
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From Section 2.1.2, and (1.45), we know that E(x>x) =
∑d

i=1 λi so that the
smallest expected approximation error when orthogonally projecting x onto a k
dimensional subspace is

E ||x−UkU>k x||2 =
d∑
i=1

λi −
k∑
i=1

λi =
d∑

i=k+1

λi, (2.59)

which is the sum of the eigenvalues whose eigenvectors were omitted from the
optimal subspace. Computing the relative approximation error highlights the
connection between minimising approximation error and maximising the variance
explained by the principal components,

E ||x−UkU>k x||2

E(x>x)
= 1−

∑k
i=1 λi∑d
i=1 λi

= 1− fraction of variance explained. (2.60)

The fraction of variance explained by a principle component (direction) thus
equals the relative reduction in approximation error that is achieved by including
it into the subspace.

2.4 PCA by low rank matrix approximation

This section uses the theory of low rank matrix approximation to provide a com-
plementary view on the PCA principles of variance maximisation and minimisa-
tion of approximation error.

2.4.1 Approximating the data matrix

We will here see that the principle component directions and scores together yield
the best low rank approximation of the data matrix, and that the PC directions
and scores can be computed by a singular value decomposition (SVD).

Let X be the d × n data matrix that contains the centred data points xi in
its columns,

X = (x1, . . . ,xn). (2.61)

We can express X via its singular value decomposition as

X = USV >. (2.62)

The d × d matrix U and the n × n matrix V are orthonormal with the vectors
ui ∈ Rd and vi ∈ Rn in their columns. The ui are called the left singular vectors
while the vi are called the right singular vectors. The matrix S is d×n and zero
everywhere but in the first r diagonal elements,

S =


s1

. . . 0
sr

0 0

 . (2.63)
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The si are the singular values. They are non-negative and assumed ordered from
large to small. The number r ≤ min(d, n) is the rank of X. The matrix X can
further be written as

X =
r∑
i=1

siuiv
>
i . (2.64)

Section A.7 provides further background on the SVD.
Assume we would like to approximate X by a matrix X̂ of rank k < r.

Judging the accuracy of the approximation by the sum of squared differences in
the individual matrix elements, we can determine X̂ by solving the optimisation
problem

minimise
M

∑
ij

((X)ij − (M)ij)
2

subject to rank(M) = k

(2.65)

The sum of squared differences
∑

ij((X)ij−(M)ij)
2 is called the Frobenius norm

between X and M and typically denoted by ||X −M ||F .
It is known from linear algebra that the optimal low rank approximation is

given by X̂,

X̂ =

k∑
i=1

siuiv
>
i , (2.66)

and that the corresponding approximation error is

||X − X̂||F =

r∑
i=k+1

s2
i , (2.67)

see (A.61) and (A.63) in Section A.10. The solution to the optimisation problem
is thus rather simple: We just keep the first k terms in (2.64).

How does this relate to principal component analysis? It turns out that

• the left singular vectors ui are the eigenvectors of the (estimated) covariance
matrix and hence equal to the principal component directions,

• the squared singular values s2
i are related to the eigenvalues λi of the co-

variance matrix by

λi =
s2
i

n
, (2.68)

• and that the principal component scores z>i = u>i X for principal compo-
nent direction i are equal to the i-th right singular vector after scaling,

z>i = siv
>
i . (2.69)

We can thus write the approximate data matrix X̂ in (2.66) as

X̂ =
k∑
i=1

uiz
>
i , (2.70)

which underlines how the k principal component directions ui and corresponding
principal component scores zi together approximately represent the data X.
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The stated connections can be seen as follows: As we assume that the data
points are centred, an estimate of the covariance matrix is given by the sample
covariance matrix,

C ≈ 1

n

n∑
i=1

xix
>
i =

1

n
XX>. (2.71)

Using C to denote both the covariance and the sample covariance matrix, we
have

C =
1

n
USV >(V SU>) = U

(
1

n
SS

)
U> (2.72)

so that the eigenvectors of C are the left singular vectors ui of the data matrix
X with eigenvalues λi as in (2.68). The i-th principle component scores were
defined as the projections w>i xj of the data points xj onto the i-th principle
component direction wi. Collecting all scores into the 1 × n row vector z>i , we
have

z>i = w>i X = u>i X = u>i USV = u>i

r∑
j=1

ujsjv
>
j = siv

>
i . (2.73)

which means that the i-th principle component scores are given by the i-th right
singular vector when multiplied with its singular value si as claimed in (2.69).

2.4.2 Approximating the sample covariance matrix

Approximating the data matrix with a matrix of lower rank yielded the first k
principle component directions and scores. We here show that the first principle
component directions can be also be obtained by a low rank approximation of the
sample covariance matrix. This provides a complementary view to PCA, in that
finding directions in the data space with maximal variance is also maximally pre-
serving the variance structure of the original data. This approach does, however,
not directly yield principle component scores.

The optimisation problem that we aim to solve is:

minimise
M

||C −M ||F

subject to rank(M) = k

M> = M

(2.74)

Much like the first k components of the SVD are solving the optimisation problem
in (2.65), results from linear algebra tell us that the optimal low rank approxi-
mation of C is given by the first k components of its eigenvalue decomposition
UΛU>, i.e. by

∑k
i=1 λiuiu

>
i , see (A.64) in Section A.10.

2.4.3 Approximating the Gram matrix

The Gram matrix is defined as the n× n matrix G,

G = X>X. (2.75)

Its (ij)-th element (G)ij is the inner product between xi and xj . The matrix is
positive semidefinite, i.e. its eigenvalues are non-negative. It is here shown that
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the first principle component scores provide an optimal low rank approximation
of G. Hence, finding coordinates that minimise the average approximation error
of the data points xi is also maximally preserving the inner product structure
between them.

With the singular value decomposition of X in (2.62), the Gram matrix has
the following eigenvalue decomposition

G = (USV >)>(USV >) = (V SU>)(USV >) = V SSV > = V ΣV > (2.76)

i.e. its eigenvectors are the right-singular vectors vi ofX, and the diagonal matrix
Σ = SS contains the eigenvalues s2

i ordered from large to small.
Like for the sample covariance matrix, we can determine the best rank k

approximation of the Gram matrix G. It is given by Ĝ,

Ĝ =
k∑
i=1

vis
2
iv
>
i . (2.77)

In (2.69), we have seen that zi = sivi is the column vector with all i-th principle
component scores. We thus have

Ĝ =

k∑
i=1

ziz
>
i , (2.78)

which shows that the k principle scores together maximally preserve the inner
product structure of the data.

Denote by Σk the diagonal matrix with the top k eigenvalues of G, and by
Vk,

Vk = (v1, . . . ,vk) (2.79)

the matrix with the corresponding eigenvectors. The k × n matrix with the
principle component scores as its rows is then

Z =
√

ΣkV
>
k . (2.80)

We have the square root because the singular values si are the square root of
the eigenvalues of G. Hence, we can compute the principle component scores
directly from the Gram matrix of the centred data, without first computing the
principle component directions. This can be done without knowing X as long as
G is available.
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Chapter 3

Dimensionality reduction

Dimensionality reduction is about representing the data in a lower dimensional
space in such a way that certain properties of the data are preserved as much
as possible. Dimensionality reduction can be used to visualise high-dimensional
data if the plane is chosen as the lower dimensional space. Taking principal
component analysis (PCA) as starting point, several nonlinear dimensionality
reduction methods are presented.

3.1 Dimensionality reduction by PCA

We can represent d-dimensional data by their first k principle components, or
more precisely, their first k principle component scores. The principle compo-
nents can be computed when the data are given in form of data vectors, and,
importantly, also when given in form of inner products or distances between
them.

3.1.1 From data points

Denote the uncentred data by x̃1, . . . , x̃n and the corresponding data matrix by
X̃,

X̃ = (x̃1, . . . , x̃n). (3.1)

We first centre the data and form the matrix X,

X = X̃Hn Hn = In −
1

n
1n1

>
n , (3.2)

where Hn is the centring matrix from (1.58). Depending on the application, we
may want to further process the data, e.g. by some form of standardisation that
was introduced in Section 1.3.2.

We can now compute the principal components via an eigenvalue decomposi-
tion of the covariance matrix C,

C =
1

n
XX>. (3.3)

Denoting the matrix with the top k eigenvectors ui by Uk,

Uk = (u1, . . . ,uk), (3.4)
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the matrix with the principle component (PC) scores is

Z = U>k X. (3.5)

While X is d × n, Z is k × n. The column vectors of Z have dimension k ≤ d
and form a lower dimensional representation of the data.

In dimensionality reduction, we are mostly interested in the PC scores, rather
than the PC directions. We can thus bypass the computation of the PC directions
and compute the PC scores directly from the Gram matrixG introduced in (2.75),

G = X>X. (3.6)

With (2.80), the k × n matrix Z in (3.5) equals

Z =
√

ΣkV
>
k , (3.7)

where the diagonal k × k matrix Σk contains the top k eigenvalues of G or-
dered from large to small, and the n × k matrix Vk contains the corresponding
eigenvectors.

3.1.2 From inner products

The elements (G)ij of the Gram matrix G = X>X are the inner products
between the centred data points xi and xj ,

(G)ij = x>i xj = (x̃i −m)>(x̃j −m). (3.8)

Since we can compute the principle component scores (but not the directions)
by an eigenvalue decomposition of the Gram matrix, we can do dimensionality
reduction without actually having seen the data points xi. Knowing their inner
products is enough.

But what should we do if we are only given the inner products between the
original data points and not between the centred data points? That is, what
should we do if we are only given the matrix G̃,

G̃ = X̃>X̃, (3.9)

and not G?

It turns out that we can compute G from G̃. With X = X̃Hn, where Hn is
the centring matrix, we have

G = X>X = H>n X̃
>X̃Hn = HnX̃

>X̃Hn = HnG̃Hn, (3.10)

where we have used that Hn is a symmetric matrix. This operation is called
double centring: Multiplying G̃ with Hn from the right makes all rows have zero
average while multiplying it from the left makes all columns have a zero average.

Since inner products can be used to measure the similarity between data
points, matrices like G̃ and G are sometimes called similarity matrices. We can
thus say that we can do dimensionality reduction by PCA given a similarity
matrix (with inner products) only.
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3.1.3 From distances

We here show that we can exactly recover the PC scores if we are only given the
squared distances δ2

ij between the data points x̃i and x̃j ,

δ2
ij = ||x̃i − x̃j ||2 = (x̃i − x̃j)>(x̃i − x̃j). (3.11)

The matrix ∆ with elements δ2
ij is called a distance matrix. (Matrices with non-

squared δij are also called distance matrices. There is some ambiguity in the
terminology.)

The trick is to recover the Gram matrix G in (2.75) from the distance matrix
∆: First, we note that the δ2

ij equal the squared distances between the centred
data points xi,

δ2
ij = ||(x̃i −m)− (x̃−m)||2 = ||xi − xj ||2 = (xi − xj)>(xi − xj). (3.12)

Multiplying out yields

δ2
ij = ||xi||2 + ||xj ||2 − 2x>i xj . (3.13)

Importantly the first term ||xi||2 is constant along row i of the matrix ∆. We
can thus eliminate it by multiplying ∆ with the centring matrix Hn from the
right. This is because

(∆Hn)ij = (∆)ij −
1

n

n∑
j=1

(∆)ij , (3.14)

as, for example, in (1.65). In more detail, let us compute

1

n

n∑
j=1

(∆)ij =
1

n

n∑
j=1

δ2
ij (3.15)

= ||xi||2 +
1

n

n∑
j=1

||xj ||2 − 2
1

n

n∑
j=1

x>i xj (3.16)

which equals

1

n

n∑
j=1

(∆)ij = ||xi||2 +
1

n

n∑
j=1

||xj ||2 − 2x>i

( 1

n

n∑
j=1

xj︸ ︷︷ ︸
0

)
(3.17)

= ||xi||2 +
1

n

n∑
j=1

||xj ||2, (3.18)

because the xj are centred and hence
∑

j xj = 0. We thus find that

(∆Hn)ij = ||xi||2 + ||xj ||2 − 2x>i xj − ||xi||2 −
1

n

n∑
j=1

||xj ||2 (3.19)

= ||xj ||2 − 2x>i xj −
1

n

n∑
j=1

||xj ||2. (3.20)
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Now, the terms ||xj ||2 and 1/n
∑n

j=1 ||xj ||2 are constant along column j of the
matrix ∆Hn. We can thus eliminate them by multiplying ∆Hn with Hn from
the left. Calculations as above show that

(Hn∆Hn)ij = (∆Hn)ij −
1

n

∑
i

(∆Hn)ij = −2x>i xj . (3.21)

We thus have Hn∆Hn = −2G, and hence obtain the desired result,

G = −1

2
Hn∆Hn. (3.22)

In the previous section, we double centred the similarity matrix G̃ to obtain G.
Here, we double centre the distance matrix ∆, and swap the signs to convert
distances to similarities. Once G is available, we compute the principle compo-
nent scores as before via an eigenvalue decomposition, see the previous section
or Equations (2.76) and (2.80).

3.1.4 Example

Figure 3.1(a) shows data that can be well represented by one principal component.
The data vary mostly along the diagonal and projecting them onto the first
principal component (red line) captures most of the variability. In figure 3.1(b)
we colour-code each data point by its principal component score. The scores
are the coordinates of the data with respect to the basis given by the principal
component direction. We can see that there is a good correspondence between
the value of the scores and the location of the data points. The scores change
smoothly from large to small as we move along the diagonal: they faithfully
represent the data and capture their structure well.

The data in Figure 3.2, on the other hand, are not as well represented by
the first principal component. The first principal component direction captures
the direction of maximal variance but the data are treated as a cloud of points
and the scores roughly indicate the location of the data along the y-axis but not
their position on the circle. The principal component scores do not capture the
circular structure of the data.

Why is PCA doing better for data as in Figure 3.1 than for data as in Figure
3.2? This can be understood by considering that PCA projects the data onto a
lower-dimensional subspace (Section 2.3). Subspaces are closed under addition
and multiplication, which means that any point on a line going through two
points from the subspace is also included in the subspace (see e.g. Section A.5).
For the data in Figure 3.2, however, there are gaps of empty space between two
data points that are unlikely to be filled even if we had more data. Such kind of
data are said to lie on a manifold, and lines between two points on a manifold
may not be part of the manifold (see, for example, Chapter 16 of Izenman (2008)
or Chapter 1 of Lee and Verleysen (2007)). If the data are part of a subspace,
it is reasonable to judge the distance between two points by the length of the
straight line connecting them, like in PCA, but if the data are on a manifold,
straight lines are a poor measure of their distance. In the same vein, the linear
projections that are used to compute the principal component scores do not take
the manifold structure of the data into account.
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Figure 3.1: Dimensionality reduction by principal component analysis. (a) The
red line shows the direction of the first PC direction. (b) The colours indicate
the value of the PC score assigned to each data point.

3.2 Dimensionality reduction by kernel PCA

Principal component analysis uses linear projections to compute the lower di-
mensional representation of the data. We here discuss kernel PCA where the
projections are typically nonlinear.

3.2.1 Idea

The principle components represent the data so that the variance is maximally
preserved. Assume that we expand the dimensionality of the xi by transforming
them to features φ(xi), for example,

φ(x) = (x1, · · · , xd, x1x2, · · · , x1xd, · · · , xdxd)>, (3.23)

where x = (x1, · · · , xd)>. The much higher dimensionality of the φi = φ(xi)
does not matter as long as we only compute k principal components from them.

Importantly, the k principal components maximally preserve the variance of
the φi that contains much more information about the data than the variance of
the xi. The covariance matrix for the particular φ(x) above, for example, contains
terms like E(x1x2x

2
3) that measure non-linear correlations between the different

dimensions of the data. Similarly, the principal components best approximate
the φi which is much harder than approximating the xi, so that the principal
components computed from the φi must capture more information about the
data than the components computed from the xi.

Hence, we can power up PCA dimensionality reduction by choosing a trans-
formation φ that maps the data points xi to φi = φ(xi), and then computing the
principle component scores from the new “data matrix” Φ,

Φ = (φ1, . . . ,φn), (3.24)
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Figure 3.2: Dimensionality reduction by principal component analysis. (a) The
red line shows the direction of the first PC direction. (b) The colours indicate
the value of the PC score assigned to each data point.

rather than from the original data matrix X. We call this approach dimension-
ality reduction by nonlinear PCA. (Note that “nonlinear PCA” sometimes refers
to other kinds of methods too.)

3.2.2 Kernel trick

Since we can compute the principal components scores from the Gram matrix of
Φ, we actually do not need to know the individual φi, but only the inner products
φ>i φj = φ(xi)

>φ(xj).
The theory of reproducing kernel Hilbert spaces tells us that for some func-

tions φ, the inner product can be computed as

φ(xi)
>φ(xj) = k(xi,xj), (3.25)

where k(x,x′) is called the kernel function (see, e.g. Schölkopf and Smola, 2002).
This means that for some functions φ, we actually do not need to know the
transformed data points φi to compute the inner product between them, it is
enough to know the kernel k(x,x′). This is called the “kernel trick” and can be
used to compute the (uncentred) Gram matrix of Φ as

(G̃)ij = φ>i φj = φ(xi)
>φ(xj) = k(xi,xj). (3.26)

Performing PCA via a Gram matrix defined by kernels as above is called kernel
PCA and has been introduced by Schölkopf, Smola, and Müller (1997).

Examples of kernels are the polynomial and Gaussian kernels,

k(x,x′) = (x>x′)a, k(x,x′) = exp

(
−||x− x

′||2

2σ2

)
, (3.27)

where the exponent a and width-parameter σ2 are hyperparameters that need
to be chosen by the user. We see that the two kernels only require the inner
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products or distances between the data points xi so that kernel PCA can also be
used if that information is available only.

After specification of G̃, we proceed exactly as in Section 3.1:

• Double centre G̃ to compute

G = HnG̃Hn. (3.28)

• Compute the matrix Z with the (kernel) PC scores by an eigenvalue de-
composition of G,

Z =
√

ΣkV
>
k , (3.29)

where, as before, the diagonal k×k matrix Σk contains the top k eigenvalues
of G ordered from large to small, and the n × k matrix Vk contains the
corresponding eigenvectors.

3.2.3 Example

Let us reconsider the circularly structured data of Figure 3.2 and use nonlinear
PCA to compute a one-dimensional representation. We map the data points xi
to features φi using the function φ(x) = φ(x1, x2),

φ(x1, x2) =
(
x1, x2,

√
x2

1 + x2
2, atan(x2, x1)

)>
, (3.30)

where x1, x2 are the first and second element of the vector x. The last two
elements in the vector φ(x) are the polar coordinates of x, which should be helpful
given the circular structure of the data. Figure 3.3 visualises the first principle
component scores computed from the transformed data matrix Φ. We can see
that the lower dimensional representation by the first PC scores is reflecting the
circular structure of the data. But there is a discontinuity in the scores around
the point (−1, 0), and the scores still ignore that a piece of the circle is missing:
data points on the lower left are assigned similar values as data points on the
lower right.

Figure 3.4 visualises the one-dimensional representation achieved by kernel
PCA with the Gaussian kernel in (3.27). The hyperparameter σ2 was determined
from the quantiles of all distances between all (different) data points. The results
do not seem better than the results with ordinary PCA in Figure 3.2.

Centring was the only preprocessing for the results above. I next also scaled
each variable to unit variance before dimensionality reduction by kernel PCA (see
Section 1.3.2 on data standardisation). Figure 3.5 shows that kernel PCA on the
standardised data yielded a mostly meaningful one-dimensional representation
for a wide range of different tuning parameters σ2. The kernel PC scores change
smoothly as we move on the data manifold. But the representation does ignore
the gap between the lower-left and lower-right branch, so that points on the
lower-left of the manifold (where x2 < −1.5 and x1 ≈ −1) are considered closer
to points on the lower-right of the manifold than points further up on the left
branch. This may be considered a drawback of the representation.
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Figure 3.3: Dimensionality reduction by nonlinear PCA. Visualisation as in
Figure 3.2(b).

3.3 Multidimensional scaling

Multidimensional scaling (MDS) is an umbrella term for several methods that
operate on dissimilarities δij . Euclidean distances are examples of dissimilarities
but dissimilarities are more general in that they can be any kind of measure of
difference between two data items. The goal of MDS is to find a configuration of
points in the plane, or more generally the Euclidean space, so that their distances
well represent the original dissimilarities.

3.3.1 Metric MDS

In metric MDS, the numerical values of the dissimilarities are assumed to carry
information. This is in contrast to nonmetric MDS below where only the rank-
order of the dissimilarities matters.

Denote the pairwise dissimilarities between n data points by δij . A basic
version of metric MDS consists in finding n points zi ∈ Rk that solve:

minimise
z1,...,zn

∑
i<j

wij(||zi − zj || − δij)2, (3.31)

where ||zi − zj || is the Euclidean distance between zi and zj ,

||zi − zj || =
√

(zi − zj)>(zi − zj). (3.32)

The wij ≥ 0 are some weights specified by the user. The dimensionality k is
typically set to two so that the data can be visualised on the plane. More complex
versions of metric MDS exist where the dissimilarities δij enter into the equation
only after transformation with some monotonic function that is learned as well,
see e.g. (Izenman, 2008, Section 13.7) or (Borg and Groenen, 2005, Chapter 9).
The optimisation problem is typically solved by gradient descent.

For wij = 1/δij , the solution for the optimisation problem in (3.31) is called
the Sammon nonlinear mapping. This choice of weights emphasises the faithful
representation of small dissimilarities.
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Figure 3.4: Dimensionality reduction by kernel principal component analysis.
The Gaussian kernel was used where σ2 was determined by the quantiles of the
distances. The colours indicate the value of the (kernel) principal component
score assigned to a data point. The sign of the scores in each panel is arbitrary.
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Figure 3.5: Dimensionality reduction by kernel principal component analysis on
standardised data. The setup and visualisation is otherwise as in Figure 3.4.
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3.3.2 Nonmetric MDS

In nonmetric MDS, only the relation between the δij is assumed to matter, i.e.
whether δ12 ≥ δ13 or δ12 ≤ δ13 , and not the actual values of the dissimilari-
ties. Such data are obtained, for example, when people are asked to rate the
dissimilarity on a scale from 0 (“identical”) to 5 (“very different”).

Since the actual values of δij do not matter, in nonmetric MDS, the optimi-
sation problem in (3.31) is modified to

minimise
z1,...,zn,f

∑
i<j

wij(||zi − zj || − f(δij))
2, (3.33)

where f is a monotonic (non-decreasing) function that converts the dissimilarities
to distances. The optimisation problem is typically solved by iterating between
optimisation with respect to the zi and optimisation with respect to f , which can
be done by regression (for further information, see, e.g. Izenman, 2008, Section
13.9).

3.3.3 Classical MDS

Classical MDS is also called classical scaling. It operates on the same kind of data
as in metric scaling, that is, the actual numerical values of the dissimilarities are
assumed to matter.

Classical scaling posits that the dissimilarities δij are (squared) Euclidean dis-
tances between some unknown, hypothetical vectors of unknown dimensionality.
Identifying the dissimilarity matrix ∆ that is formed by the δij with a distance
matrix between the unknown vectors brings us back to the setting from Section
3.1.3, and we can use the developed theory to determine the lower dimensional
zi ∈ Rk, i = 1 . . . n.

1. Compute the hypothetical Gram matrix G′ of the unknown centred data
points,

G′ = −1

2
Hn∆Hn, Hn = In −

1

n
1n1

>
n , (3.34)

as in (3.22). (The ′ should emphasise thatG′ is a hypothetical Gram matrix,
it does not denote the transpose of the matrix.)

2. Compute the top k eigenvalues σ2
k and corresponding eigenvectors vk ∈ Rn

of G, and form the matrices Σk = diag(σ2
1, . . . , σ

2
k) and Vk = (v1, . . . ,vk).

3. The k × n matrix Z with the zi as its columns,

Z = (z1, · · · , zn), (3.35)

is then given by Z =
√

ΣkV
>
k , as in (2.80).

Classical MDS can thus turn any dissimilarity matrix ∆ into a configuration of
lower-dimensional vectors zi that represent the dissimilarities. It also has the nice
property that it produces nested solutions because the classical MDS solution for
k′ < k is directly given by the first k′ coordinates of the k-dimensional zi.
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There is one subtle technical caveat: The matrix ∆ is symmetric but not
necessarily positive semidefinite. This is because we only pretended that ∆ cor-
responds to Euclidean distances in some unknown space, but this may only hold
approximately. As ∆ is not necessarily positive semidefinite, some of its eigen-
values may be negative so that taking square roots as above in the third step
would not yield meaningful representations. The simple fix is to choose k small
enough that all eigenvalues contained in Σk are indeed positive.

For negative definite matrices ∆, eigenvectors corresponding to negative eigen-
values are thus excluded. We can think of this operation as a way to approximate
∆ by a positive semidefinite matrix. It turns out that the simple operation of
excluding directions with negative eigenvalues is actually the optimal positive
semidefinite approximation of ∆ with respect to the Frobenius norm (see Sec-
tion A.10.3). Further results from linear algebra show that the lower dimensional
representation Z =

√
ΣkV

>
k yields the best low rank approximation of G′ with

respect to the Frobenius norm (see Section A.10.4). That is, Z is the solution to

minimise
M

||(−1

2
H∆H)−M>M ||F

subject to rank(M>M) = k

(3.36)

This is a different optimisation problem than the one in (3.31) for metric MDS,
and the solution returned by classical and metric MDS are generally not the same.

3.3.4 Example

I applied the Sammon nonlinear mapping to the circularly shaped data in Figure
3.2, reducing the dimension from two to one. The Sammon mapping is the
solution of the optimisation problem in (3.31), which can have multiple local
minima. I thus ran the algorithm multiple times and Figure 3.6 shows the two
different solutions typically obtained. The solution in Figure 3.6(a) basically
corresponds to the PCA-solution. The solution figure (b), however, shows that
the learned one-dimensional representation, i.e. the points z1, . . . zn in (3.31), do
take the manifold structure of the data into account.

The solution in 3.6(a) assigns the same low dimensional coordinate to the
point on the left and right branch of the manifold. Their distance is thus practi-
cally zero even though in the original data space, their distance is rather large.
The solution (b) assigns different values to the points on the left and the right
half of the circle, so that their distances in the lower dimensional space better
matches their distances in the original space.

Figure 3.7 plots the distances in the original space against the distances in
the lower dimensional space. The phenomenon described above is well visible in
that the solution from 3.6(a) has distances equal to zero even though the original
distances are around two.

3.4 Isomap

Classical MDS is used as part of the isometric feature mapping (Isomap) algo-
rithm (Tenenbaum, Silva, and Langford, 2000) where the dissimilarity δij between
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Figure 3.6: Dimensionality reduction by the Sammon nonlinear mapping. The
method is prone to local optima. The solution in (b) has a small cost than (a).
The colours indicate the value of the one-dimensional coordinate assigned to a
data point.

two data points xi ∈ Rd and xj ∈ Rd is measured by the shortest distance between
them when only allowed to travel on the data manifold from one neighbouring
data point to the next. This is called a geodesic distance. The neighbourhood of
a data point can be taken to be the m-nearest neighbours or also all points that
are within a certain (Euclidean) distance. The set of neighbourhoods defines a
graph on which one is allowed to move. For further information on Isomap, see
the original algorithm or the books by Izenman (2008, Section 16.6) and Lee and
Verleysen (2007, Section 4.3).

Figure 3.8 shows the graphs for the circularly shaped data in Figure 3.2. We
see that for a neighbourhood that is specified by 5 nearest neighbours, the graph
has two unconnected components. In this case, Isomap is often applied to each
component separately.

Figure 3.9 visualises the one-dimensional coordinates z1, . . . , zn that are ob-
tained by applying classical MDS on the geodesic distances. They well represent
the circular structure when the learned graph is connected.
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Figure 3.7: Dimensionality reduction by the Sammon nonlinear mapping. Com-
parison of the distances in the original and lower dimensional space. The blue
points correspond to the solution in Figure 3.6(a); the red points to the solution
in Figure 3.6(b)

-1.5 -1 -0.5 0 0.5 1 1.5

x1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

x
2

(a) 5 neighbours

-1.5 -1 -0.5 0 0.5 1 1.5

x1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

x
2

(b) 10 neighbours

Figure 3.8: Dimensionality reduction by Isomap. Comparison of graphs con-
structed from different neighbourhoods.
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Figure 3.9: Dimensionality reduction with Isomap. The colours indicate the
value of the one-dimensional coordinate assigned to each data point.
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Chapter 4

Performance evaluation in
predictive modelling

Regression and classification are typical examples of predictive modelling. The
general goal in predictive modelling of data is to identify a relationship between
some predictor (input) and some target (output) variables that enables one to
accurately predict the values of the target variables for some newly observed
values of the predictor variables. This chapter is about evaluating the perfor-
mance of prediction models and methods, and about selecting among competing
alternatives.

4.1 Prediction and training loss

The key notions of prediction and training loss are introduced.

4.1.1 Prediction loss

Let us denote the predictor variables by x and let us assume that we are only
interested in a single target variable y. In regression, y is real-valued while
in classification, y is the class label, e.g. minus one and one. Both x and y
are considered random variables that have a joint probability density function
p(x, y). For any fixed value of x, the target variable y thus follows the conditional
distribution p(y|x). Both the joint pdf and the conditional pdf are unknown.

From a probabilistic perspective, the goal of predictive modelling is to es-
timate the conditional distribution p(y|x) from observed data. In many cases,
however, we need to report a single estimated value of y rather than a whole
distribution. That is, we are looking for a prediction function h(x) that provides
an estimate ŷ = h(x) for any value of x.

Making a prediction ŷ may incur a loss L(ŷ, y) so that certain prediction
functions are better than others. Due to the stochasticity of the predictors and
the target, the quality of a prediction function h is measured via the expected
value of L(ŷ, y),

J (h) = Eŷ,y [L(ŷ, y)] = Ex,y [L(h(x), y)] , (4.1)

which is called the prediction loss. The term Ex,y means expectation with respect
to p(x, y).
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The goal of predictive modelling can be formulated as the optimisation prob-
lem

minimise
h

J (h). (4.2)

While concise, the formulation hides some fundamental issues: First, we gener-
ally cannot compute the expectation over (x, y) analytically. Secondly, the loss
function L may not be easy to evaluate – it could, for example, be given by user
ratings that indicate the quality of a prediction ŷ. And thirdly, minimising the
prediction loss with respect to a function is generally difficult.

4.1.2 Training loss

The objective in (4.2) can typically not be computed and the optimisation prob-
lem not be solved exactly. We make a number of approximations to obtain a
computable loss function for which optimisation is, at least in principle, feasible.

If n samples (xi, yi) are available that are each independently drawn from
p(x, y),

(xi, yi)
iid∼ p(x, y), (4.3)

the expectation in the definition of the prediction loss can be approximated by a
sample average,

J (h) ≈ 1

n

n∑
i=1

L(h(xi), yi). (4.4)

The samples (xi, yi) are called the training data Dtrain,

Dtrain = {(x1, y1), . . . , (xn, yn)}. (4.5)

In the sample-average approximation, we assumed that training data are avail-
able that come from the same distribution p(x, y) as the data for which we would
like to perform predictions. In many cases, however, this assumption is violated
and the training data come from a different distribution. This can lead to inac-
curate predictions, so that care should be taken that at least parts of the training
data are representative of the conditions for which the prediction function will
be ultimately used.

Instead of minimising the (approximate) prediction loss with respect to any
function h, we typically search for h inside model families that are parametrised
by some parameters θ, so that h(x) = hλ(x;θ), where λ is a vector of hyper-
parameters indicating the model family and some tuning parameters associated
with it. The hyperparameters could for example indicate whether we use re-
gression trees or neural networks. And when using neural networks, they could
additionally indicate the number of hidden units, whereas θ would correspond to
the weights in the network.

The number of parameters θ may be rather large so that gradient informa-
tion is needed in the optimisation. But some loss functions L, like for example
classification error, are not differentiable so that gradient descent is not possi-
ble. Other loss functions L may be expensive to evaluate, like for example when
based on user ratings. For practical reasons, we may thus prefer to determine θ
by minimising a proxy loss function L rather than the loss function L that we
are really interested in.
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In summary, instead of working with J (h) we work with the training loss
function Jλ(θ),

Jλ(θ) =
1

n

n∑
i=1

L(hλ(xi;θ), yi). (4.6)

Minimisation of Jλ(θ) is typically done by minimising the loss function with
respect to θ separately for fixed values of the hyperparameters. We then obtain
a set of prediction function ĥλ(x) indexed by λ,

ĥλ(x) = hλ(x; θ̂λ), θ̂λ = argmin
θ

Jλ(θ). (4.7)

Determining ĥλ(x) from training data is called model estimation. The associated
minimal value of the training loss function is the training loss J∗λ,

J∗λ = min
θ
Jλ(θ). (4.8)

The training loss function Jλ(θ), the prediction function ĥλ(x), and the corre-
sponding training loss J∗λ all depend on the training data Dtrain. Different training
data sets will result in different loss functions, different prediction functions, and
different training losses. This means that they are all random quantities whose
stochasticity is induced by the variability of the training data.

Minimising Jλ(θ) for several λ yields a set of prediction functions ĥλ(x).
Choosing from them the prediction function ĥ(x) that is actually used for making
predictions is done by a process called hyperparameter selection. If the hyper-
parameter indicates the model family, the process is called model selection. We
will see below that choosing the hyperparameters that yield the smallest training
loss is generally a bad idea because the corresponding prediction function tends
to be highly specific to the particular training data used and thus may perform
poorly when making predictions for new (unseen) values of x.

4.1.3 Example

Let us illustrate the above concepts on a simple example where the joint distri-
bution of the prediction and target variable is given by

p(x) =
1√
2π

exp

(
−1

2
x2

)
, (4.9)

p(y|x) =
1√
2π

exp

(
−1

2
(y − g(x))2

)
, g(x) =

1

4
x+

3

4
x2 + x3. (4.10)

The function g(x) is the conditional mean E(y|x). It minimises the expected
square loss, i.e. (4.1) for

L(ŷ, y) = (ŷ − y)2. (4.11)

We assume that we have a training data set Dtrain with n data points (xi, yi).
Figure 4.1(a) shows g(x) and an example training set.
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Training loss for linear regression

Let us first work with a linear prediction model so that

h1(x;θ) = θ0 + θ1x, θ = (θ0, θ1)>, (4.12)

where θ0 is the intercept and θ1 the slope parameter. When using the quadratic
loss, the training loss function is

J1(θ) =
1

n

n∑
i=1

(yi − θ0 − θ1xi)
2. (4.13)

For any value of θ1, the optimal value of the constant θ0 is

θ̂0 = ȳ − θ1x̄, ȳ =
1

n

n∑
i=1

yi, x̄ =
n∑
i=1

1

n
xi, (4.14)

so that θ1 is the only unknown when working with centred data. The training
loss function becomes

J1(θ1) =
1

n

n∑
i=1

((yi − ȳ)− θ1(xi − x̄))2. (4.15)

Minimising J1(θ1) gives θ̂1,

θ̂1 = argmin
θ1

J1(θ1), (4.16)

and the estimated prediction model ĥ1(x),

ĥ1(x) = θ̂0 + θ̂1x = ȳ + θ̂1(x− x̄). (4.17)

Figure 4.2(a) shows the training loss function J1(θ1) and the estimated regression
function ĥ1(x).

The training loss function J1(θ) in (4.13) varies as the training data vary.
The training loss function J1(θ) is a random quantity. Its minimiser inherits the
randomness, and the minimal training loss

J∗1 = min
w

J1(w) (4.18)

is a random variable too. The randomness is due to the variability of the training
data Dtrain. Random quantities have a probability distribution, and Figure 4.3
visualises the distribution of the training loss function and the distribution of
its minima J∗1 . The probability density function of J∗1 was estimated from a
histogram using Equation (1.26) from Chapter 1.

Training loss for polynomial regression

Instead of working with a linear prediction model, let us now consider more
general prediction models of the form

hλ(x;θ) =
λ∑
k=0

θkx
k, θ = (θ0, . . . , θλ)>. (4.19)
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Figure 4.1: Example nonlinear regression (prediction) problem. The true regres-
sion curve is shown in black and the example training data in blue. The size of
the training data is n = 20.

The functions hλ(x;θ) are polynomials of degree λ. The hλ(x;θ) correspond to
a set of prediction models: We have one prediction model for each value of λ. Its
complexity and number of free parameters increases with increasing values of λ.
For λ = 0, the prediction model is a constant, and for λ = 1 we obtain the linear
model used above.

We can estimate the prediction models by minimising the average square loss
as before,

Jλ(θ) =
1

n

n∑
i=1

(
λ∑
k=0

θkx
k
i − yi

)2

, (4.20)

Minimising Jλ(θ) yields the prediction functions ĥλ with training loss J∗λ.

Figure 4.4(a) shows the estimated probability density function (pdf) of the
training loss J∗λ. The pdf for the polynomial of degree one is the same as in Figure
4.3(b). We see that the training loss tends to become smaller if the complexity
of the model increases.

Another view is provided in Figure 4.4(b). The figure shows the training loss
J∗λ as a function of the degree of the polynomials. We see that both the variance
and the mean of the training loss becomes smaller with increasing complexity of
the model. The same holds for more general models than the polynomial one
used here. Indeed, it is generally possible to increase the complexity of the model
to the point where the minimal training loss becomes zero (see Section 4.2.2).

4.2 Generalisation performance

The training loss can be made smaller by using more complex models. But we are
ultimately interested in the prediction rather than in the training loss. In other
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Figure 4.2: The true regression curve is shown in black and the estimated re-
gression curve in red.

words, we are interested in how well we perform on unseen data after learning.
This is called generalisation performance.

4.2.1 Generalisation for prediction functions and algorithms

The training loss function in (4.6) was used as a proxy of the prediction loss J (h)
that we are really interested in minimising. We say that a prediction function ĥ
generalises well if its prediction loss J (ĥ) is small,

J (ĥ) = Ex,y
[
L(ĥ(x), y)

]
. (4.21)

The prediction loss J (ĥ) is called the generalisation loss or the test loss of ĥ.
This is because J (ĥ) measures whether the performance of ĥ generalises from
the training data Dtrain and training loss function L to new “test” data (x, y) ∼
p(x, y) and the prediction loss function L. As argued above, J (ĥ) can generally
not be computed. But unlike before, we here do not need to solve an optimisation
problem. We only need to evaluate J at ĥ, which is considerably easier. It
amounts to estimating the expected value of L(ĥ(x), y), which can be done with
hold-out data (see Section 4.3.1).

Since the prediction function ĥ depends on the training data Dtrain, the pre-
diction loss J (ĥ) depends on the training data too. The prediction loss J (ĥ) is
thus a random variable whose stochasticity is induced by the variability of the
training sets. We will see now that its expected value J̄ can be used to measure
the generalisation performance of prediction algorithms.

Let us denote the algorithm that is used to turn training data Dtrain into a
prediction function ĥ by A so that

ĥ = A(Dtrain). (4.22)

The algorithm A subsumes all operations needed to turn training data into a
prediction function, including for example the minimisation of the loss function
or the selection of hyperparameters. Think of it as a piece of code that takes
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Figure 4.3: The loss functions and their minima are random quantities. The
figures illustrate their distribution. (a) Loss functions for different training sets.
(b) Distribution of the square root of the training loss J∗1 for different training
sets. The dashed vertical line indicates the mean of the estimated distribution.

training data as input and returns a prediction function ĥ as output. We can
then write the expected prediction loss J̄ as a function of A

J̄ (A) = EDtrain

[
J (ĥ)

]
= EDtrain

[
J
(
A(Dtrain)

)]
. (4.23)

While J (ĥ) in (4.21) measures the performance of a specific ĥ, J̄ (A) measures
the performance of the process, or algorithm, that is used to obtain ĥ from the
training data. The purpose of the two performance measures in (4.21) and (4.23)
is thus different: J (ĥ) can be used to compare different prediction functions while
J̄ (A) can be used to compare different prediction algorithms.

If we consider algorithms Aλ that operate with different (fixed) hyperpa-
rameters λ, we can use J̄ (Aλ) to compare and select among them. Like J (ĥ),
however, the expected prediction loss J̄ (A) can typically not be computed in
closed form and needs to be estimated, for which cross-validation can be used
(see Section 4.3.1).

4.2.2 Overfitting and underfitting

Let us consider the training and (expected) prediction loss of the prediction
functions ĥλ(x) in (4.7) for different models. By using a model with n free
parameters θ = (θ1, . . . , θn)>, we can make the training loss always equal to
zero. Indeed, if

hflexible(x;θ) =

{
θi if x = xi

0 otherwise
(4.24)

we can set θ̂i = yi and the training loss is zero (assuming that L(yi, yi) = 0).
Unless x and y can only take discrete values that are all included in the training
data, the (expected) prediction loss of ĥflexible will be large. The prediction func-
tion is overfitting the training data. More generally, a model has been overfitted
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Figure 4.4: Distribution of the training loss for different degrees of the polynomial
prediction model. The complexity of the model increases with the degree of the
polynomial.

to the training data if reducing its complexity reduces the (expected) prediction
loss.

On the other hand, a prediction model

hrigid(x; θ) = θ, (4.25)

which always takes on a constant value, will have a training loss that is rather
large. Unless the response variable y does indeed not depend on the predictors
x, the (expected) prediction loss will be large, too, and could be decreased by
choosing a more flexible model that better captures the relationship between x
and y. Prediction functions like hrigid(x; θ) are said to underfit the training data.

The problem of over- and underfitting can be addressed by model selection
and by means of regularisation. In regularisation, we work with flexible models
but augment the training loss function Jλ(θ), which measures the quality of the
prediction, with an additional term that penalises flexibility of the prediction
function. For training, we thus solve the optimisation problem

minimise
θ

Jλ(θ) + λregR(θ), (4.26)

where R(θ) is the penalty term on the parameters of hλ(x;θ) and λreg indicates
the strength of the regularisation. Typical penalty terms are

R(θ) =
∑
i

θ2
i (L2 or Tikhonov regularisation) (4.27)

R(θ) =
∑
i

|θi| (L1 regularisation) (4.28)

but also terms that penalises rapidly varying functions. The amount of regular-
isation depends on λreg. We can consider it to be another hyperparameter that
we can select in order to maximise generalisation performance.
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4.2.3 Example

We continue the example of polynomial regression to illustrate how the generali-
sation performance depends on the model complexity and the size of the training
data.

Generalisation performance and model complexity

Figure 4.5(a) shows the training and prediction loss of the fitted polynomial
regression model ĥλ as a function of the degree of the polynomial (model com-
plexity) λ. We can see that the prediction loss and training loss are generally not
the same, i.e.

J (ĥλ) 6= J∗λ. (4.29)

In the figure, the prediction loss is smallest for λ = 4, and while a five-degree
polynomial has the smallest training loss, it has the largest prediction loss. Such
a mismatch between training and prediction performance is due to overfitting.
The estimated model ĥλ is highly tuned to the specific training data Dtrain and
does not reflect the general relationship between the predictor and the target
variable. In contrast, we see that increasing the complexity of the degree-zero
or degree-one polynomial will decrease the prediction loss. That is, these models
are underfitting the training data.

While Figure 4.5(a) depicts the training and prediction loss for a particular
training set, Figure 4.5(b) shows their distribution over different training data
sets. We can see that the variability of the prediction loss increases with the
flexibility of the model. This is due to overfitting because the estimated model
then depends strongly on the particularities of each training set that are bound
to vary when the training data change. Underfitting, in contrast, leads to a small
variability of the prediction loss because the fitted model captures comparably
few properties of the training data.

The red solid line in Figure 4.5(b) shows the expected (average) prediction loss
J̄ as a function of λ. While a model of degree λ = 4 performed best for the partic-
ular training data used in (a), models of degree λ = 3 yield the best performance
on average. We see that there is here a difference between the generalisation
performance of a specific fitted model and the generalisation performance of a
model-family across different training sets, which reflects the general difference
between J (ĥλ) and J̄ (Aλ) discussed in Section 4.2.1.

Generalisation performance and the size of the training data

The results so far were obtained for training sets of size n = 20. We saw that
flexible models tended to overfit the training data, so that there was stark differ-
ence between training and prediction performance. Here, we illustrate how the
size of the training data influences the generalisation performance.

Figure 4.6 shows the expected training and prediction loss as a function of
the size n of the training data for polynomial models of different degree. We can
generally see that the training and prediction loss approach each other as the
sample size increases. Note that they may generally not reach the same limit
as n increases because the training and prediction loss functions L and L, for
example, may not be the same.
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Figure 4.5: Training versus prediction performance of different prediction models.

Figure 4.6(a) shows that increasing the model complexity decreases the pre-
diction loss for the models of degree zero and one. Moreover, their prediction
loss does not decrease below a certain level even if the size of the training data
increases. Both phenomena are a sign of underfitting.

Figure 4.6(b) shows the average training and prediction loss for the polynomial
model of degree five. The large difference between training and prediction loss for
small sample sizes is due to overfitting. As the size of the training data increases,
however, the gap between the two losses becomes smaller, which means that the
amount of overfitting decreases.

Comparing Figure 4.6(a) and (b) shows us further that even for large samples,
on average, the model of degree five does here not achieve a smaller prediction loss
than the model of degree three. Hence, for this problem, there is no advantage
in using a more complex model than the model of degree three. In general, we
can use model selection to choose among candidate models, or regularisation to
avoid overfitting flexible models on small training data. Both model selection
and choosing the right amount of regularisation correspond to hyperparameter
selection.

4.3 Estimating the generalisation performance

We typically need to estimate the generalisation performance twice: Once for
hyperparameter selection, and once for final performance evaluation. We first
discuss two methods for estimating the generalisation performance and then apply
them to the two aforementioned tasks.

4.3.1 Methods for estimating the generalisation performance

The hold-out and the cross-validation approach to estimate the generalisation
performance are presented.
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Figure 4.6: Average training versus average prediction performance for different
sizes of the training data.

Hold-out approach

Assume that the prediction function ĥ has been obtained using training data
Dtrain, i.e.

ĥ = A(Dtrain). (4.30)

If another data set D̃ is available with ñ samples (x̃i, ỹi) ∼ p(x, y) that are
statistically independent from the samples in Dtrain, we can use D̃ to estimate
the prediction loss J (ĥ) via a sample average

Ĵ (ĥ; D̃) =
1

ñ

ñ∑
i=1

L(ĥ(x̃i), ỹi). (4.31)

Depending on the context, D̃ is called a test or a validation set.
We are typically given the union of the two data sets Dtrain and D̃, and it is

up to us how to split them into the two sets. Common split ratios are n/ñ =
60/40, 70/30, or 80/20. If the number of (hyper) parameters is large, it is better
to increase the ratio so that more data are available for training.

While the splitting is often done randomly, particularly in classification, it is
important that the different values of the target variable (e.g. the class labels)
represented in a balanced way in both Dtrain and D̃. Stratification methods can
be used so that e.g. the classes are present in the same proportions in both Dtrain

and D̃.
The value of the estimated prediction loss in (4.31) may vary strongly for

different hold-out data sets D̃ unless ñ is large. This is often seen as a drawback
of the hold-out approach. Figure 4.7 illustrates the variability that can be intro-
duced by randomly splitting a data set into a training set Dtrain and test set D̃.
Cross-validation is often used to avoid such issues.

Cross-validation

Cross-validation consists in randomly dividing the data that are available for
training intoK (roughly) equally-sized subset (folds)D1, . . . ,DK without overlap.
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Figure 4.7: Possible variability in the estimated prediction loss. (a) The esti-
mated prediction loss for a classification problem with a polynomial prediction
model. (b) Variability induced by random splitting of the available data (392
data points) into training set and test set (here: of equal size). Each curve shows
a different realisation of the random variable Ĵ (ĥ; D̃). Adapted from (James,
Witten, and Hastie, 2016, Figure 5.2).

For the same reasons as in the hold-out approach, we may want to use here
stratification. From the folds, we construct K pairs of training data sets Dtrain

k

and hold-out (validation) sets Dval
k ,

Dtrain
k =

⋃
i 6=k
Di, Dval

k = Dk, (4.32)

as illustrated in Figure 4.8. The K training sets are used to obtain K prediction
functions ĥk,

ĥk = A(Dtrain
k ), (4.33)

whose performance Ĵk is evaluated on the data Dval
k that was held-out during

training,
Ĵk = Ĵ (ĥk;Dval

k ). (4.34)

The performance Ĵ (ĥk;Dval
k ) is computed via (4.31). We are essentially repeat-

ing the hold-out approach K times, each time with different data. The cross-
validation (cv) score CV is then the average of all Ĵk,

CV =
1

K

K∑
i=1

Ĵk. (4.35)

The cv score is sometimes used as an improved version of Ĵ in (4.31). But it
is actually rather an estimate of the expected prediction performance J̄ (A) in
(4.23). The cv score does indeed not depend on a prediction function but on the
prediction algorithm A. This can be more clearly seen when writing

Ĵk = Ĵ (ĥk;Dval
k ) = Ĵ

(
A(Dtrain

k );Dval
k

)
(4.36)

so that

CV =
1

K

K∑
i=1

Ĵk =
1

K

K∑
i=1

Ĵ
(
A(Dtrain

k );Dval
k

)
, (4.37)
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Figure 4.8: Sketch of K-fold cross-validation for K = 5.

which does depend on the algorithm A but not on a particular prediction function

ĥ. The cv score is thus an estimate ˆ̄J (A) of J̄ (A)

ˆ̄J (A) = CV. (4.38)

The cross-validation score CV, and hence the estimate of J̄ , depends on the
particular assignment of the data points into the K folds, so that the score is a
random variable. One can assess its distribution by performing cross-validation
several times but this tends to be a computationally expensive procedure.

Alternatively, if K is not too large, e.g. K = 5, one can assess the variability
of the cv-score by estimating its variance as

V(CV) ≈ 1

K
V(Ĵ ), V(Ĵ ) ≈ 1

K

K∑
k=1

(Ĵk − CV)2. (4.39)

We have here approximations because the formulae assume statistical indepen-
dence of the Ĵk, which is not the case as they were all computed from the same
data. The square root of V(CV) is called the standard error of the cv-score.

The value of K is a tuning parameter. A typical choice is K = 5, so that the
training sets Dtrain

k consist of 4/5 of all data points available and the validation
sets Dval

k of 1/5 of them. If the validation sets consist of one data point only,
the method is called leave-one-out cross-validation (LOOCV). While generally
very expensive, for some problems, the computation can be done quickly. For
a further discussion of the choice of K, see e.g. Section 7.10 in the textbook by
Hastie, Tibshirani, and Friedman (2009).

4.3.2 Hyperparameter selection and performance evaluation

We consider a scenario where we have several prediction models hλ(x;θ) that we
can possibly use for solving our prediction task, and that we need to select among
them. An algorithm that depends on the hyperparameters λ will be denoted by
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Aλ. Two approaches to hyperparameter selection and performance evaluation
of the final prediction function are presented: The first uses hold-out data to
select the hyperparameters and hold-out data for performance evaluation while
the second uses cross-validation for hyperparameter selection and hold-out data
for performance evaluation.

Two times hold-out

This approach to hyperparameter selection and performance evaluation proceeds
as follows:

1. From all the data D that are available to us, we split off some test data
Dtest to estimate the performance our final prediction function ĥ. The test
data will never be touched until the final performance evaluation. A typical
size of the test data is 20% of D.

2. We split the remaining data into a training set Dtrain and a validation set
Dval, using, for example, again the 80/20 ratio (Dtrain contains 80% of the
data that remain after the initial splitting while Dval contains 20% of them).

3. Running an algorithm with tuning parameters λ on Dtrain returns a set of
functions

ĥλ = Aλ(Dtrain) (4.40)

indexed by the hyperparameters λ.

4. We evaluate the performance of ĥλ on Dval by computing the estimated
prediction loss PL(λ)

PL(λ) = Ĵ (ĥλ;Dval), (4.41)

where Ĵ is defined in (4.31). We choose λ by minimising PL(λ),

λ̂ = argmin
λ

PL(λ). (4.42)

5. Using λ̂, we re-estimate the parameters θ on the union of the training and
validation data Dtrain ∪ Dval. By using more data, we can estimate the
prediction model more accurately. Denote the resulting prediction function
by ĥ,

ĥ = Aλ̂(Dtrain ∪ Dval). (4.43)

6. We take the test data Dtest out of the vault to compute an estimate Ĵ of
the prediction loss of ĥ,

Ĵ = Ĵ (ĥ;Dtest), (4.44)

using (4.31).

7. We re-estimate ĥ using all data available,

ĥ(x) = Aλ̂(D), (4.45)

which provides us with the final prediction function ĥ. An estimate of its
generalisation performance is given by Ĵ in (4.44).
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In some cases the re-estimation needs to be skipped because of computational
reasons. Optimisation over the hyperparameters λ is typically not possible by
gradient descent. Grid search can be used if the number of hyperparameters
is small. Alternative methods are random search where different values of the
hyperparameters are randomly tried out (Bergstra and Bengio, 2012), or Bayesian
optimisation where the functional relationship between the hyperparameters and
the prediction loss is modelled via (Gaussian process) regression, which is used
to guide the optimisation (e.g. Snoek, Larochelle, and Adams, 2012).

Cross-validation and hold-out

In this approach, we choose the hyperparameters by cross-validation and estimate
the prediction performance by a hold-out test set. In more detail, we proceed as
follows:

1. As above, from all the data D that are available to us, we split off some
test data Dtest to estimate the performance our final prediction function ĥ.
The test data will never be touched until the final performance evaluation.
A typical size of the test data is 20% of D.

2. We use the remaining data, call it Dtrain, to compute the cv-score CV as

a function of the hyperparameters. The cv-score is an estimate ˆ̄J of the
expected prediction loss J̄ , see (4.38). Let us denote it by EPL(λ),

EPL(λ) = CV = ˆ̄J (Aλ). (4.46)

3. We choose λ̂ by minimising EPL(λ). Since the cv-score is an estimate
with standard-deviation

√
V(CV), an alternative method is to choose the

hyperparameters so that they result in the simplest model while still having
a cv-score that is within one standard deviation of the minimal cv-score.

4. Using λ̂, we re-estimate the parameters θ from Dtrain. Denote the resulting
prediction function by ĥ,

ĥ = Aλ̂(Dtrain). (4.47)

5. We take the test data Dtest out of the vault to compute an estimate Ĵ of
the prediction loss of ĥ,

Ĵ = Ĵ (ĥ;Dtest), (4.48)

using (4.31).

6. We re-estimate ĥ using all data available,

ĥ = Aλ̂(D), (4.49)

which provides us with the final prediction function ĥ. An estimate of its
generalisation performance is given by Ĵ in (4.48).
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Figure 4.9: Distribution of the minimal cv-score (blue) and true prediction losses
(prediction errors, red) for several artificially generated classification problems
where the true prediction error is 0.5. Sample size was 40 and classification was
done by support-vector machines. The figure is from Varma and Simon (2006),
Figure 2.

In some cases the re-estimation needs to be skipped because of computational
reasons. Minimisation of the cv-score can typically not be done by gradient de-
scent. As before, gradient-free minimisation methods such as grid search, random
search, or Bayesian optimisation can be used.

Like a training loss, the minimal cv-score is typically an optimistic estimate
of the prediction loss because the hyperparameters are chosen such that the cv-
score is minimised. The prediction loss tends to be underestimated as illustrated
in Figure 4.9. That is why we need the hold-out test data Dtest to determine the
generalisation performance.

4.4 Loss functions in predictive modelling

This section provides a brief overview of loss functions that are widely used in
regression and classification.

4.4.1 Loss functions in regression

Typical loss functions L in regression are

L(ŷ, y) =
1

2
(ŷ − y)2 (square loss) (4.50)

L(ŷ, y) = |ŷ − y| (absolute loss) (4.51)

L(ŷ, y) =

{
1
2(ŷ − y)2 if |ŷ − y| < δ

δ|y − ŷ| − 1
2δ

2 otherwise
(Huber loss) (4.52)
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Figure 4.10: Loss functions that are often used in regression.

Figure 4.10 shows plots of the different loss functions. The absolute loss is more
robust than the square loss since it does not grow as quickly, but it is not dif-
ferentiable when the residual ŷ − y is zero. The Huber loss combines the good
properties of the square and the absolute loss.

4.4.2 Loss functions in classification

We distinguish between loss functions that differentiable with respect to param-
eters of the classifier and those which are not.

Non-differentiable loss functions

We assume here that y and ŷ can take K different values, for instance {1, . . . ,K}.
This corresponds to classification with K different classes. The loss function
L(ŷ, y) can then be represented as a K ×K matrix L,

L =


L(1, 1) L(1, 2) · · · L(1,K)
L(2, 1) L(2, 2) · · · L(2,K)

...
...

...
L(K, 1) L(K, 2) · · · L(K,K)

 . (4.53)

The diagonal elements L(i, i) are zero as they correspond to correct predictions.
The off-diagonal elements L(i, j) are positive; they correspond to the loss incurred
when predicting i instead of j. Since ŷ takes on discrete values, we cannot
compute derivatives with respect to parameters θ that might govern the classifier.

If L(i, j) = 1 for i 6= j and zero otherwise, the loss is said to be the zero-one
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loss. Its expectation J (h) equals

J (h) = Ex,y L(h(x), y) (4.54)

= Eŷ,y L(ŷ, y) (4.55)

=
∑
i,j

L(i, j)p(i, j) (4.56)

=
∑
i 6=j

p(i, j) (4.57)

= P (y 6= ŷ) , (4.58)

which is the misclassification or error rate. The term p(i, j) = P(ŷ = i, y = j)
denotes the joint probability of (ŷ, y). The joint probability of (ŷ, y) is induced
by the joint probability of (x, y) and the prediction function h. The p(i, j) for
i 6= j indicate the probabilities that h wrongly predicts i if the true class is j. We
generally want h to be such that these probabilities are small.

If there are only two classes, for example {−1, 1}, the random variables (ŷ, y)
can take four possible values and the predictions are typically called “true pos-
itive”, “false negative”, “false positive”, or “true negative”, see Table 4.1. The
possible conditional probabilities p(ŷ|y) are:

true-positive rate of h: P(ŷ = 1|y = 1) (4.59)

true-negative rate of h: P(ŷ = −1|y = −1) (4.60)

false-positive rate of h P(ŷ = 1|y = −1) = 1− true-negative rate (4.61)

false-negative rate of h: P(ŷ = −1|y = 1) = 1− true-positive rate (4.62)

The probabilities all depend on h since ŷ = h(x). The true-positive rate is also
called sensitivity, hit rate, or recall. Another name for the true-negative rate is
specificity. The false-positive rate is the probability that h says wrongly “1”. It
is also called the type 1 error. The false-negative rate is the probability that
h says wrongly “-1”. It is also called the type 2 error. While the true-positive
and true-negative rates correspond to the benefits of h, the false-positive and
false-negative rates correspond to the costs associated with using h.

The loss function L(ŷ, y) can be defined such that J (h) penalises false-positive
and false-negative rates. If we let

L =

(
0 1

P(y=−1)
1

P(y=1) 0

)
(4.63)

the expected loss equals the sum of the false-positive and the false-negative rate:

J (h) = = Ex,y L(h(x), y) (4.64)

= Eŷ,y L(ŷ, y) (4.65)

=
∑
i,j

L(i, j)p(i, j) (4.66)

=
p(1,−1)

P(y = −1)
+
p(−1, 1)

P(y = 1)
(4.67)

= P(ŷ = 1|y = −1) + P(ŷ = −1|y = 1) (4.68)
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ŷ y meaning probability shorthand notation

1 1 true positive P(ŷ = 1, y = 1) p(1, 1)

1 -1 false positive P(ŷ = 1, y = −1) p(1,−1)

-1 1 false negative P(ŷ = −1, y = 1) p(−1, 1)

-1 -1 true negative P(ŷ = −1, y = −1) p(−1,−1)

Table 4.1: Possible events and their probabilities in binary classification.

Such a cost function can be advantageous over the misclassification rate if there
is, for instance, an imbalance between the probabilities for y = 1 and y = −1.

Minimising the false-positive (or false-negative) rate alone is not be very
meaningful strategy: The reason is that the trivial classifier h(x) = ŷ = −1
would be the optimal solution. But for such a classifier the true-positive rate
would be zero. There is generally a trade-off between true-positive and false-
positive rates. This trade-off can be visualised by plotting the false-positive rate,
or “cost” of h versus the true-positive rate, or “benefit” of h, see Figure 4.11.
Such a plot is said to visualise the classifier in the “ROC space”, where ROC
stands for “receiver operating characteristic”.

For classifiers or models with a hyperparameter, the performance of the clas-
sifier in the ROC space traces out a curve as the value of the hyperparameter is
changed. The curve can be used for hyperparameter selection because classifiers
that are located closest to the upper-left corner have the best trade-off between
true-positive and false-positive rate. Classifiers that are located on a line parallel
to the diagonal trade a better true-positive rate against a larger false-positive
rate. We may consider such classifiers to be equivalent and the choice of working
with one rather than the other is problem dependent. The area under the curve
in the ROC space can be used to compare two classifiers or models irrespective
of the value of the hyperparameter.

Differentiable loss functions in classification

For simplicity, we consider here binary classification only. Let us assume that
ŷ ∈ {−1, 1} is given by

ŷ(x) = sign(h(x)) (4.69)

where h(x) is real-valued.
An input x gets correctly classified if h(x) takes positive values for y = 1 and

negative values for y = −1. That is,

correct classification of x⇐⇒ yh(x) > 0.

The quantity yh(x) is called the margin and it plays a similar role as the residual
y − h(x) in regression. The zero-one loss introduced above can be obtained by
operating on the margin rather than on ŷ. Indeed, the zero-one loss is obtained
for

L(h(x), y) =

{
1 if yh(x) < 0

0 otherwise.
(4.70)
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Figure 4.11: Plotting the false-positive rate (“cost”) of a classifier versus its
true-positive rate (“benefit”). Classifier B is obtained by setting ŷ = 1 with
probability 0.8 irrespective of the data. Classifier A takes advantage of the data
and its benefit outweighs its cost while classifier C incurs a larger cost than ben-
efit. Adapted from https://en.wikipedia.org/wiki/Receiver_operating_

characteristic
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Several loss functions operate on the margin yh(x). Typical ones are:

L(h(x), y) = (h(x)− y)2 = (1− yh(x))2 (square loss) (4.71)

L(h(x), y) = log(1 + exp(−yh(x))) (log loss) (4.72)

L(h(x), y) = exp(−yh(x)) (exponential loss) (4.73)

L(h(x), y) = max(0, 1− yh(x)) (hinge loss) (4.74)

L(h(x), y) = max(0, 1− yh(x))2 (square hinge loss) (4.75)

L(h(x), y) =

{
−4yh(x) if yh(x) < −1

max(0, 1− yh(x))2 otherwise
(Huberised square hinge loss)

(Hastie, Tibshirani, and Friedman, 2009, Section 10.6 and Table 12.1). The dif-
ferent loss functions are visualised in Figure 4.12. Unlike the standard hinge
loss, the square hinge loss is differentiable everywhere. The remaining loss func-
tions are differentiable with respect to h, so that a smoothly parametrised model
h(x;θ) can be optimised by gradient-based optimisation methods. The different
loss functions can be considered to approximate the zero-one loss. Most of them
assign a loss to small positive margins, thus encouraging more confident decisions
about the label. The square loss function is both sensitive to outliers and pe-
nalises large (positive) margins, which can be seen as a key disadvantage of the
loss function.

Minimising the log-loss over a sample of n data points (xi, yi), drawn from
p(x, y), is equivalent to maximising the log-likelihood in logistic regression. In
logistic regression, we model the conditional probabilities of y|x as

P(y = 1|x;h) =
1

1 + exp(−h(x))
P(y = −1|x;h) =

1

1 + exp(h(x))
(4.76)

and estimate h by maximising the log-likelihood

`(h) =
∑

xi:yi=1

logP(yi = 1|xi;h) +
∑

xi:yi=−1

logP(yi = −1|xi;h) (4.77)

= −
∑

xi:yi=1

log (1 + exp(−h(xi)))−
∑

xi:yi=−1

log (1 + exp(h(xi)) (4.78)

= −
∑
xi

log (1 + exp(−yih(xi))) . (4.79)

We can see that `(h) is n times the negated sample average of the log loss.
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Appendix A

Linear algebra

The material in this chapter is mostly a refresher of some basic results from linear
algebra. But it also contains some proofs of results that may be harder to find.
The proofs are not examinable.

A.1 Matrices

A m × n matrix A is a m × n array of numbers arranged into m rows and n
columns. The element at row i and column j is denoted by aij so that

A =

a11 a12 . . . a1n
...

...
am1 am2 . . . amn

 . (A.1)

We will sometimes use the indexing notation (A)ij to refer to element aij . The
transpose A> of a matrix A is the matrix where the entries of A are mirrored at
the diagonal, i.e. (A>)ij = (A)ji. If A> = A, the matrix is said to be symmetric.

Multiplying a matrix with a scalar produces a matrix where each element is
scaled by said scalar, for example

αA =

αa11 αa12 . . . αa1n
...

...
αam1 αam2 . . . αamn.

 (A.2)

Two matrices of the same size can be added together by adding their correspond-
ing elements, for example

A+B =

a11 a12 . . . a1n
...

...
am1 am2 . . . amn

+

 b11 b12 . . . b1n
...

...
bm1 bm2 . . . bmn

 (A.3)

=

 a11 + b11 a12 + b12 . . . a1n + b1n
...

...
am1 + bm1 am2 + bm2 . . . amn + bmn.

 (A.4)
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If matrix A has size m × n and matrix B size n × p, the two matrices can be
multiplied together. The results is a m × p matrix C = AB whose elements
(C)ij = cij are given by

(C)ij =

n∑
k=1

(A)ik(B)kj , or, equivalently, cij =

n∑
k=1

aikbkj . (A.5)

The equations mean that to compute the (ij)-th element of C, we multiply the
elements of the i-th row of A with the elements of the j-th column of B and sum
them all up.

The trace of a m×m matrix A is the sum of its diagonal elements,

trace(A) =

m∑
i=1

aii. (A.6)

The trace of AB equals the trace of BA: Let A be m × n and B n ×m. We
then have

trace(AB) =
m∑
i=1

(AB)ii =
m∑
i=1

 n∑
j=1

aijbji

 =
n∑
j=1

m∑
i=1

bjiaij , (A.7)

which equals
∑n

j=1(BA)jj and hence

trace(AB) = trace(BA) (A.8)

as claimed.

A.2 Vectors

A n-dimensional vectors v can be seen as n×1 matrix. We denote its i-th element
by vi or sometimes also by (v)i. By default, v is a column vector, i.e.

v =

v1
...
vn

 . (A.9)

It’s transpose v> is the row vector (v1, . . . , vn). Like matrices, vectors can be
scaled, added or multiplied together. The product between a 1× n vector u and
a n× 1 vector v is with (A.5) a number equal to

uv =
n∑
i=1

uivi. (A.10)

The inner product or scalar product u>v between two n dimensional vectors u
and v is

u>v =

n∑
i=1

uivi, (A.11)
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that is, the vector u is first transposed to be row vector after which (A.5) is
applied. Importantly, it does not matter whether u or v is transposed, i.e.

u>v = v>u. (A.12)

The outer product uv> between a m dimensional vector u and a n dimensional
vector v is a m× n matrix

uv> =


u1

u2
...
um

(v1 v2 . . . vn
)

=


u1v1 u1v2 . . . u1vn
u2v1 u2v2 . . . u2vn

...
...

...
umv1 umv2 . . . umvn

 . (A.13)

It can be seen that the (i, j)-th element of the matrix is equal to uivj in line with
(A.5).

Equation (A.5) also tells us that the product between a m× n matrix A and
n-dimensional vector v equals a m-dimensional vector v with elements vi,

vi =
n∑
j=1

aijuj i = 1, . . . ,m. (A.14)

A.3 Matrix operations as operations on column vec-
tors

It is often helpful to consider a m×n matrix A as a collection of n column vectors
aj of dimension m that are arranged next to each other,

A = (a1, . . . ,an). (A.15)

Note that the i-th element of the j-th column of A is (A)ij = (aj)i.

A.3.1 Matrix-vector products

By computing the i-th element, we see that v = Au can be written as weighted
combination of the column vectors aj ,

Au =

n∑
j=1

ajuj =

a11
...

am1


︸ ︷︷ ︸

a1

u1 + . . .+

a1j
...

amj


︸ ︷︷ ︸

aj

uj + . . .+

a1n
...

amn


︸ ︷︷ ︸

an

un, (A.16)

The equation shows that for vectors u that are zero everywhere but in slot k,
Au = akuk, which means that we can “pick” column k of A by multiplication
with the k unit vector.
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A.3.2 Matrix-matrix products

Products between matrices can also be written in terms of operations on the
column vectors. Let B be a n× p matrix with column vectors bi ∈ Rn,

B = (b1, . . . , bp). (A.17)

By computing the (i, j)-th element, we see that AB can be written as a collection
of column vectors Abj ,

AB = (Ab1, . . . ,Abp). (A.18)

Indeed, the i-th element of the j-th column is (Abj)i and

(Abj)i =
n∑
k=1

(A)ik(bj)k =
n∑
k=1

(A)ik(B)kj , (A.19)

which equals (AB)ij .
Assume for a moment that matrix B is zero everywhere but in a r × r block

in the upper left,

B =


b1

. . . 0

br

0 0

 (A.20)

That is, the first r column vectors bj are zero everywhere but in slot j where they
equal bj , i.e. b1 = (b1, 0, . . .)

>, b2 = (0, b2, 0, . . .)
> and so on, and the remaining

column vectors br+1, . . . , bp are all zero. From (A.18) and (A.16), it follows that

AB = (b1a1, b2a2, . . . , brar,0, . . . ,0). (A.21)

This shows that we can weigh each column vector of the matrix A, or set it to
zero, by multiplying it with a matrix that is zero everywhere but in the first r
diagonal elements.

A.3.3 Outer product representation of a matrix-matrix product

Assume we want to compute the matrix productAB> whereA is m×n as before
but B is p× n. Let us denote the n columns of B by bj ∈ Rp,

B = (b1, . . . , bn). (A.22)

From (A.5), we know that

(AB>)ij =

n∑
k=1

(A)ik(B
>)kj =

n∑
k=1

(A)ik(B)jk (A.23)

We now show that AB> can also be written as sum of outer products between
the column vectors of A and B,

AB> =
n∑
k=1

akb
>
k . (A.24)
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This identity can be verified by computing the (i, j)-th element of the matrix on
the right-hand-side: (

n∑
k=1

akb
>
k

)
i,j

=
n∑
k=1

(
akb

>
k

)
i,j

(A.25)

=

n∑
k=1

(ak)i(bk)j . (A.26)

Since (ak)i is the i-th element of the k-th column of A, we have (ak)i = (A)ik.
For the same reason, (bk)j = (B)jk, so that (ak)i(bk)j = (A)ik(B)jk and(

n∑
k=1

akb
>
k

)
i,j

=

n∑
k=1

(A)ik(B)jk, (A.27)

which equals (A.23) and thus proves the identity in (A.24).

A.4 Orthogonal basis

Two vectors u1 ∈ Rn and u2 ∈ Rn are said to be orthogonal if their inner product
(scalar product) u>1 u2 is zero. If additionally the vectors are of unit norm,

||ui|| =
√
u>i ui, i = 1, 2, (A.28)

the vectors are said to be orthonormal. A set of n orthonormal vectors ui ∈ Rn
forms an orthogonal basis of Rn. This means that any vector x ∈ Rn can be
written as a weighted combinations of the u1, . . . ,un,

x =
n∑
i=1

ciui. (A.29)

The weights ci are the coordinates of x with respect to the basis. Due to the
orthogonality of the ui, the coordinates ci can computed via an inner product
between the ui and x,

ci = u>i x, i = 1, . . . , n, (A.30)

We can form a matrix U by putting all the orthonormal basis vectors next to
each other as the columns of the matrix,

U = (u1, . . . ,un). (A.31)

The matrix U is said to be an orthogonal matrix. Since the vectors ui have unit
norm and are orthogonal to each other, we have that U>U = In where In is the
n-dimensional identity matrix.

Collecting all coordinates ci into the vector c = (c1, . . . , cn)>, we have with
(A.30)

c = U>x. (A.32)

With (A.16), we can similarly write (A.29) more compactly as

x = Uc. (A.33)

It follows that x = UU>x, from where we see that not only U>U = In but also
UU> = In for orthogonal matrices U .
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A.5 Subspaces

An orthogonal basis u1, . . . ,un enables us to represent any vector x ∈ Rn as a
weighted combination of the vectors. If we do not have n orthonormal vectors
but only k of them, e.g. u1, . . . ,uk, we cannot represent all n-dimensional vectors
but only those vectors z ∈ Rn that can be written as

z =
k∑
i=1

aiui, ai ∈ R. (A.34)

This set of vectors is said to be spanned by the u1, . . .uk and denoted by
span(u1, . . .uk). In other words,

span(u1, . . .uk) = {z ∈ Rn : z =
k∑
i=1

aiui}. (A.35)

If z1 ∈ span(u1, . . .uk) and z2 ∈ span(u1, . . .uk), i.e. if

z1 =
k∑
i=1

aiui, z2 =
k∑
i=1

biui, (A.36)

their weighted sum αz1 + βz2 equals

αz1 + βz2 =

k∑
i=1

αaiui +

k∑
i=1

βbiui =

k∑
i=1

(αai + βbi)ui (A.37)

and thus belongs to span(u1, . . .uk) as well. This means that the span is closed
under addition and scalar multiplication, which makes it a subspace of Rn. Since
any vector z of span(u1, . . .uk) can be expressed using k coordinates only, namely
the u>i z, i = 1, . . . k, span(u1, . . .uk) is a k-dimensional subspace of Rn.

We now show that any vector x ∈ Rn can be split into a part x‖ that belongs
to span(u1, . . .uk) and a part x⊥ that belongs to span(uk+1, . . .un), the span of
the remaining basis vectors uk+1, . . . ,un. Since

x =

n∑
j=1

ujcj =

k∑
j=1

ujcj +

n∑
j=k+1

ujcj (A.38)

we have that

x = x‖ + x⊥, x‖ =
k∑
j=1

ujcj , x⊥ =
n∑

j=k+1

ujcj . (A.39)

As x‖ is a weighted sum of the u1, . . .uk, and x⊥ a weighted sum of the uk+1, . . .un,
the vectors x‖ and x⊥ are orthogonal to each other. The subspace span(uk+1, . . .un)

is said to be orthogonal to span(u1, . . .uk) and is thus also denoted by span(u1, . . .uk)
⊥.
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A.6 Orthogonal projections

Let us collect the k vectors uk into the n× k matrix Uk,

Uk = (u1, . . . ,uk). (A.40)

Since the uk are orthonormal, U>k Uk = Ik, but, unlike for orthogonal matrices,
UkU

>
k is not the identity matrix. We next show that UkU

>
k x equals the part x‖

of x that belongs to the k-dimensional subspace span(u1, . . .uk).
This can be most easily seen by writingUkU

>
k as a sum of elementary matrices

uiu
>
i ,

UkU
>
k =

k∑
i=1

uiu
>
i , (A.41)

which we can do according to (A.24). Applying UkU
>
k on a vector x thus gives

UkU
>
k x

(A.41)
=

k∑
i=1

uiu
>
i x (A.42)

(A.29)
=

k∑
i=1

uiu
>
i

n∑
j=1

ujcj (A.43)

=
k∑
i=1

ui

n∑
j=1

u>i ujcj (A.44)

=
k∑
i=1

uici (A.45)

(A.39)
= x‖, (A.46)

where we have used that u>i uj equals zero unless j = i. The mapping of x to
UkU

>
k x = x‖ is called the orthogonal projection of x onto span(u1, . . .uk). It

follows that (Id −UkU>k )x equals x⊥, and that the matrix (Id −UkU>k ) is the
orthogonal projection of x onto span(u1, . . .uk)

⊥.

A.7 Singular value decomposition

The singular value decomposition (SVD) of a m×n matrix A is the factorisation
of the matrix into the product USV >,

A = USV >, (A.47)

The m×n matrix S is zero everywhere but in the first r diagonal elements (S)ii
that are positive. We denote the (S)ii by si so that

S =


s1

. . . 0
sr

0 0

 (A.48)
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The diagonal elements are called the singular values ofA and are typically ordered
so that s1 ≥ s2 ≥ · · · ≥ sr. Matrices U and V are both orthogonal. We denote
the column vectors of the two matrices correspondingly by ui and vi,

U = (u1, . . . ,um), V = (v1, . . . ,vn). (A.49)

The vectors ui and vi form an orthogonal basis for Rm and Rn, and are called
the left-singular vectors and right-singular vectors, respectively. The number
r ≤ min(m,n) is called the rank of the matrix A.

Due to the structure of the matrix S only the ui and vi with i ≤ r actually
contribute to the factorisation. Indeed, with (A.21), the m×n matrix US equals

US = (s1u1, . . . , srur,0, . . . ,0). (A.50)

and with (A.24), USV > is

USV > =

r∑
i=1

siuiv
>
i +

n∑
i=r+1

0v>i (A.51)

so that A = USV > is

A =

r∑
i=1

siuiv
>
i = UrSrV

>
r (A.52)

where

Ur = (u1, . . . ,ur), Sr =

s1

. . .

sr

 , Vr = (v1, . . . ,vr). (A.53)

This is called the compact, “thin”, or “skinny” SVD of A.

A.8 Eigenvalue decomposition

The eigenvalue decomposition is a factorisation for symmetric matrices. The
eigenvalue decomposition of the symmetric m×m matrix A of rank r is

A = UΛU>, (A.54)

where Λ is a m × m diagonal matrix with r non-zero elements λi that we can
assume to be ordered as λ1 ≥ λ2 ≥ · · · ≥ λr. Note that the λi may be positive
or negative. Matrix U is orthogonal with orthonormal column vectors ui. As for
the SVD, the vectors ui for which (Λ)ii = 0 can actually be ignored so that

A =
r∑
i=1

λiuiu
>
i = UrΛrU

>
r , (A.55)

where

Ur = (u1, . . . ,ur), Λr =

λi . . .

λr

 (A.56)
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The vectors ui are called the eigenvectors and the λi the eigenvalues. It follows
from (A.55) that

Auk = λkuk, (A.57)

i.e. the matrix A only scales the vectors ui by their corresponding eigenvalue λi.

A.9 Positive semi-definite and definite matrices

A symmetric m × m matrix is called positive semi-definite if all m eigenvalues
are non-negative and positive definite if they are all positive. A positive definite
matrix has full rank, r = m, and the eigenvectors u1, . . . ,um form an orthogonal
basis of Rm.

If a matrix M has the singular value decomposition M = UrSrV
>
r as in

(A.52), the eigenvalue decomposition of MM> is

MM> = UrSr V
>
r Vr︸ ︷︷ ︸
Ir

SrU
>
r = UrS

2
rU
>
r , (A.58)

on the other hand, the eigenvalue decomposition of M>M is

M>M = VrSrU
>
r Ur︸ ︷︷ ︸
Ir

SrV
>
r = VrS

2
rV
>
r , (A.59)

where in both cases S2
r refers to the diagonal matrix with elements s2

i . Both
M>M and MM> have the s2

i as eigenvalues. We see that the eigenvalues are
non-negative so that M>M and MM> are positive semi-definite matrices.

A.10 Matrix approximations

A.10.1 Low rank approximation of general matrices

The singular value decomposition allows us to decompose a m × n matrix A of
rank r as

A =

r∑
i=1

siuiv
>
i = UrSrV

>
r , (A.60)

see (A.52). The r singular values si > 0 are decreasing. Intuitively, the “later”
rank-one matrices uiv

>
i with smaller singular values contribute less to A than

the “earlier” rank-one matrices with larger singular values. In fact the best
approximation Â of the matrix A by a matrix Ã of rank k < r is given by the
first k terms of the expansion above,

Â =
k∑
i=1

siuiv
>
i . (A.61)

This result is unique if and only if sk > sk+1. The result is obtained when the
quality of the approximation is measured by the Frobenius norm

||A− Ã||F =
∑
ij

((A)ij − (Ã)ij)
2 (A.62)
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but also for other matrix norms (e.g. the spectral norm). For the Frobenius
norm, the error when approximating A with Â is the sum of the squares of the
remaining singular values

∑
ij

((A)ij − (Â)ij)
2 =

r∑
i=k+1

s2
i . (A.63)

This result is known as the Eckart–Young–Mirsky theorem and a proof can be
found in e.g. (Gentle, 2007, Section 3.10) or (Björck, 2015, Theorem 2.2.11).

A.10.2 Low rank approximation of positive semi-definite matri-
ces

For positive semi-definite matrices, the above approximation based on the sin-
gular value decomposition carries over: The best approximation Â of a positive
semi-definite matrix A of rank r by a matrix Ã of rank k < r is

Â =

k∑
i=1

λiuiu
>
i . (A.64)

The smallest approximation error for the Frobenius norm is

||A− Â||F =
m∑
ij=1

((A)ij − (Â)ij)
2 =

r∑
i=k+1

λ2
i , (A.65)

so that ||A− Ã||F ≥
∑r

i=k+1 λ
2
i for other candidates Ã.

A.10.3 Approximating symmetric matrices by positive semi-definite
matrices

A rank r symmetric matrix A that is not positive definite has the eigenvalue
decomposition

A =
r∑
i=1

λiuiu
>
i , (A.66)

where some λi are negative. Let us assume that there are p ≥ 1 positive eigenval-
ues and that λ1 ≥ . . . ≥ λp > 0 > λp+1 ≥ . . . ≥ λr. We would like to determine
the positive semi-definite matrix closest to A. Measuring closeness by the Frobe-
nius norm, a result by Higham (1988) shows that the closest matrix Â is obtained
by retaining the terms with positive eigenvalues only,

Â =

p∑
i=1

λiuiu
>
i =

r∑
i=1

max(λi, 0)uiu
>
i . (A.67)

The approximation error is

||A− Â||F =

r∑
i=p+1

λ2
i , (A.68)
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and matrix Â has rank p.
Following (Higham, 1988), the proof exploits that the Frobenius norm is in-

variant under rotations, i.e. ||A||F = ||AU ||F = ||UA||F for any orthogonal
matrix U . Let Ã be a positive semi-definite matrix. We then have

||A− Ã||F = ||UrΛrU
>
r − Ã||F (A.69)

= ||U>r UrΛrU
>
r Ur −U>r ÃUr||F (A.70)

= ||Λr −U>r ÃUr︸ ︷︷ ︸
B

||F (A.71)

=

r∑
i=1

(λi − bii)2 +

r∑
i,j=1
i6=j

b2ij (A.72)

where bij are the elements of the matrix B = U>r ÃUr. Because the b2ij ≥ 0, we
have

||A− Ã||F ≥
r∑
i=1

(λi − bii)2 (A.73)

=

p∑
i=1

(λi − bii)2︸ ︷︷ ︸
≥0

+

r∑
i=p+1

(λi − bii)2 (A.74)

≥
r∑

i=p+1

(λi − bii)2 (A.75)

Since bii ≥ 0 as Ã is restricted to be positive semi-definite and λi < 0 for i > p,
we have in the equation above that λi − bii ≤ λi < 0 and thus (λi − bii)2 ≥ λ2

i .
We thus obtain the following lower bound for ||A− Ã||F :

||A− Ã||F ≥
r∑

i=p+1

λ2
i (A.76)

A diagonal matrix B with elements bi = max(λi, 0) achieves the lower bound.
The result in (A.67) now follows from Ã = UrBU

>
r .

A.10.4 Low rank approximation of symmetric matrices by posi-
tive semi-definite matrices

As before let the symmetric matrix A of rank r have p positive eigenvalues,

A =

r∑
i=1

λiuiu
>
i , (A.77)

where λ1 ≥ . . . ≥ λp > 0 > λp+1 ≥ . . . ≥ λr. Combining (A.67) with (A.64) we
show here that the best positive semi-definite approximation of rank k < p is

Â =
k∑
i=1

λiuiu
>
i , (A.78)
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and that the smallest approximation error is

||A− Â||F =
r∑

i=k+1

λ2
i . (A.79)

Let Ã be a positive semi-definite matrix of rank k < p. As for the proof of
(A.64), we write

||A− Ã||F = ||UrΛrU
>
r − Ã||F (A.80)

= ||U>r UrΛrU
>
r Ur −U>r ÃUr||F (A.81)

= ||Λr −U>r ÃUr︸ ︷︷ ︸
B

||F (A.82)

=

r∑
i=1

(λi − bii)2 +

r∑
i,j=1
i 6=j

b2ij (A.83)

where bij = u>i Ãuj are the elements of the matrix B = U>r ÃUr. Because the
b2ij ≥ 0, we have

r∑
i,j=1
i6=j

b2ij ≥
p∑

i,j=1
i6=j

b2ij (A.84)

and hence

||A− Ã||F ≥
r∑
i=1

(λi − bii)2 +

p∑
i,j=1
i6=j

b2ij (A.85)

=

p∑
i=1

(λi − bii)2 +

p∑
i,j=1
i6=j

b2ij +
r∑

i=p+1

(λi − bii)2 (A.86)

= ||Λp −U>p ÃUp||F +
r∑

i=p+1

(λi − bii)2 (A.87)

As Ã is restricted to be positive semi-definite bii ≥ 0, and since λi < 0 for i > p,
we have in the equation above that λi − bii ≤ λi < 0 and thus (λi − bii)2 ≥ λ2

i .
Hence:

||A− Ã||F ≥ ||Λp −U>p ÃUp||F +
r∑

i=p+1

λ2
i (A.88)

The matrix Λp is a positive definite p× p matrix, while the matrix U>p ÃUp is a
p × p matrix of rank k. The smallest approximation error of a positive definite
matrix by a matrix of lower rank is with (A.65) equal to

∑p
i=k+1 λ

2
i . We can thus

bound ||A− Ã||F from below by
∑r

i=k+1 λ
2
i ,

||A− Ã||F ≥
r∑

i=k+1

λ2
i . (A.89)

The matrix Â in (A.78) achieves the lower bound which completes the proof.

Data Mining and Exploration, Spring 2017



A.10 Matrix approximations 83

References
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