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Evaluate what?

• Do you want to evaluate a classifier or a 
learning algorithm?

• Do you want to predict accuracy or predict 
which one is better?

• Do you have a lot of data or not much?

• Are you interested in one domain or in 
understanding accuracy across domains? 
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For really large amounts of 
data....

• You could use training error to estimate your test error

• But this is stupid, so don’t do it

• Instead split the instances randomly into a training set and test set

• But then suppose you need to:

• Compare 5 different algorithms

• Compare 5 different feature sets

• Each of them have different knobs in the training algorithm (e.g., size 
of neural network, gradient descent step size, k in k-nearest 
neighbour, etc., etc.)
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A: Use a validation set.

•When you first get the data, put the test set 
away and don’t look at it.

• The validation set lets you compare the 
“tweaking” parameters of different algorithms.

This is a fine way to work, if you have lots of data.

Training TestingValidation
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1. Hypothesis Testing
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Variability

Classifier A: 81% accuracy

Classifier B: 84% accuracy

Which classifier do you think is best?
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Variability

Classifier A: 81% accuracy

Classifier B: 84% accuracy

But then suppose I tell you
• Only 100 examples in the test set
• After 400 more test examples, I get

     0-100  101-200  201-300  301-400  401-500
A:    0.81    0.77     0.78     0.81     0.78
B:    0.84    0.75     0.75     0.76     0.78
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Sources of Variability

• Choice of training set

• Choice of test set

• Inherent randomness in learning algorithm

• Errors in data labeling
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     0-100  101-200  201-300  301-400  401-500
A:    0.81    0.77     0.78     0.81     0.78
B:    0.84    0.75     0.75     0.76     0.78

Key point:

Your measured testing error is a random variable
   (you sampled the testing data)

This is another learning problem!

Want to infer the “true test error”
   based on this sample

Next slide: Make this more formal...
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Test error is a random 
variable

Call your test data x1, x2, . . . , xN

xi ⇠ Dwhere independently

e = Prx⇠D[f(x) 6= h(x)]
True error

ê =
1

N

NX

i=1

1[f(xi) 6=h(xi)]

Test error

h

f

the classifier

the true function

N ! 1Theorem:  As then ê ! e [Why?]

1foo delta function
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Test error is a random 
variable

Call your test data x1, x2, . . . , xN

xi ⇠ Dwhere independently

e = Prx⇠D[f(x) 6= h(x)]
True error

ê =
1

N

NX

i=1

1[f(xi) 6=h(xi)]

Test error

h

f

the classifier

the true function

Theorem: 

1foo delta function

ê ⇠ Binomial(N, e)
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Main question

Classifier A: 81% accuracy

Classifier B: 84% accuracy

Suppose

Is that difference real?
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Rough-and-ready variability
Classifier A: 81% accuracy

Classifier B: 84% accuracy

If doing c-v, report both mean and standard 
deviation of error across folds.

Is that difference real?

Answer 1:

If doing c-v, report both mean and standard 
deviation of error across folds.
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Learning Evaluation

World

Sample

Estimation Classifier Avg error on test set

True errorOriginal problem
(e.g., Difference between
 spam and normal emails)

Inboxes for multiple users
Classifier performance

on each example
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4. Derive the distribution of      assuming #1.

“reject the null hypothesis”

Hypothesis testing
Want to know whether     and     are significantly different.êA êB

1. Suppose not. [“null hypothesis”]

2. Define a test statistic, in this case 

3. Measure a value of the statistic 

T̂

5. If p = Pr[T > T̂ ] is really low, e.g., < 0.05,

is your p-valuep

T = |eA � eB |
T̂ = |êA � êB |

If you reject, then the difference is “statistically significant”
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Example
Classifier A: 81% accuracy

Classifier B: 84% accuracy

4. Derive the distribution of      assuming the null.T̂

T̂ = |êA � êB | = 0.03

What we know:
êA ⇠ Binomial(N, eA)

êB ⇠ Binomial(N, eB)

eA = eB
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Approximation to the 
rescue
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êA ⇠ N (NeA, NeA(1 � eA))

Approximate binomial by normal

Monday, 20 February 12

Distribution under the null

4. Derive the distribution of      assuming the null.

What we know:

êA ⇠ N (NeA, s2
A)

êB ⇠ N (NeB , s2
B)

eA = eB

s2
A = NeA(1 � eA)

where

T̂
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Distribution under the null

4. Derive the distribution of      assuming the null.

What we know:

êA ⇠ N (NeA, s2
A)

êB ⇠ N (NeB , s2
B)

eA = eB

s2
A = NeA(1 � eA)

where

T̂

But this means
êA � êB ⇠ N (0, sAB)

sAB =
2eAB(1 � eAB)

N

eAB =
1

2
(eA + eB)

(assuming the two are independent...)

2

2
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Computing the p-value

(assuming the two are independent...)

“reject the null hypothesis”
5. If p = Pr[T > T̂ ] is really low, e.g., < 0.05,

In our example
êA � êB ⇠ N (0, sAB)2

s2
AB ⇡ 0.0029

So one line of R (or MATLAB):
> pnorm(-0.03, mean=0, sd=sqrt(0.0029)) 
[1] 0.2887343
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Frequentist Statistics
What does

really mean?
p = Pr[T > T̂ ]

Generated 1000 test 
sets for classifiers A 
and B, computed 
error under the null:

Our example: T̂ = 0.03

p-value is shaded area  

T.hat
Fr
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Frequentist Statistics
What does

really mean?
p = Pr[T > T̂ ]

Refers to the “frequency” behaviour if the test is applied 
over and over for different data sets.

Fundamentally different (and more orthodox) than 
Bayesian statistics.
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Errors in the hypothesis test
Type I error: False rejects

Type II error: False non-reject

Logic is to fix the Type I error ↵ = 0.05

Design the test to minimise Type II error
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Summary

• Call this test “difference in proportions test”

• An instance of a “z-test”

• This is OK, but there are tests that work better in 
practice...
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McNemar’s Test

n11 n01

n10  n00

Classifier A
correct

Classifier A
wrong

Classifier B
correct

Classifier B
wrong
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McNemar’s Test
pA probability A is correct GIVEN A and B disagree

Null hypothesis: pA = 0.5

Test statistic:

(|n10 � n01| � 1)2

n01 + n10

Distribution under null?
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McNemar’s Test
Test statistic:

(|n10 � n01| � 1)2

n01 + n10

Distribution under null? �2 (1 degree of freedom)
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Pros/Cons McNemar’s test

Pros

• Doesn’t require the independence assumptions of 
the difference-of-proportions test

• Works well in practice [Dietterich, 1997]

Cons

• Does not assess training set variability
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Accuracy is not the only 
measure

Accuracy is great, but not always helpful
e.g., Two class problem. 98% instances negative 

Alternative: for every class C, define 

Precision

Recall

F-measure

R =
# instances of C that classifier got right

# true instances of C

P =
# instances of C that classifier got right

# instances that classifier predicted C

F1 =
2

1
P + 1

R

=
2PR

P + R
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Calibration
Sometimes we care about the confidence of a classification.

If the classifier outputs probabilities, can use cross-entropy:

H(p) =
1

N

NX

i=1

log p(yi|xi)

where
(xi, yi) feature vector, true label for each instance i

p(yi|xi) probabilities output by the classifier
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An aside

• We’ve talked a lot about overfitting.

• What does this mean for well-known contest data 
sets? (Like the ones in your mini-project.)

• Think about the paper publishing process. I have an 
idea, implement it, try it on a standard train/test 
set, publish a paper if it works.

• Is there a problem with this?
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2. ROC curves
(Receiver Operating Characteristic)
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Problems in what we’ve 
done so far

• Skewed class distributions

• Differing costs
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Classifiers as rankers

• Most classifiers output a real-valued score as well 
as a prediction

• e.g., decision trees: proportion of classes at leaf

• e.g., logistic regression: P(class | x)

• Instead of evaluating accuracy at a single 
threshold, evaluate how good the score is at 
ranking
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More evaluation measures

TP FP

FN TN

Assume two classes.  (Hard to do ROC with more.)

True

Predicted

+ -

+

-

TP: True positives
FP:  False positives
TN: True negatives
FN: False negatives
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More evaluation measures

TP FP

FN TN

True

Predicted

+ -

+

-

ACC =
TP + TN

TP + TN + FP + FN
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More evaluation measures

TP FP

FN TN

True

Predicted

+ -

+

-

ACC =
TP + TN

TP + TN + FP + FN

P =
TP

TP + FP
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More evaluation measures

TP FP

FN TN

True

Predicted

+ -

+

-

ACC =
TP + TN

TP + TN + FP + FN

P =
TP

TP + FP

TPR =
TP

TP + FN

TPR: True positive rate, FPR: False positive rate

a.k.a., recall

FPR =
FP

FP + TN
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More evaluation measures

TP FP

FN TN

True

Predicted

+ -

+

-

TPR =
TP

TP + FN

TPR: True positive rate, FPR: False positive rate

FPR =
FP

FP + TN

total + instances

total - instances
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“ROC space”
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Figure 2: A basic ROC graph showing five discrete classifiers.

Several points in ROC space are important to note. The lower left point (0, 0) represents the strategy of never

issuing a positive classification; such a classifier commits no false positive errors but also gains no true positives. The

opposite strategy, of unconditionally issuing positive classifications, is represented by the upper right point (1, 1).

The point (0, 1) represents perfect classification. D’s performance is perfect as shown.

Informally, one point in ROC space is better than another if it is to the northwest (TP rate is higher, FP rate

is lower, or both) of the first. Classifiers appearing on the left hand-side of an ROC graph, near the X axis, may

be thought of as “conservative”: they make positive classifications only with strong evidence so they make few false

positive errors, but they often have low true positive rates as well. Classifiers on the upper right-hand side of an

ROC graph may be thought of as “liberal”: they make positive classifications with weak evidence so they classify

nearly all positives correctly, but they often have high false positive rates. In figure 2, A is more conservative than B.

Many real world domains are dominated by large numbers of negative instances, so performance in the far left-hand

side of the ROC graph becomes more interesting.

3.1 Random Performance

The diagonal line y = x represents the strategy of randomly guessing a class. For example, if a classifier randomly

guesses the positive class half the time, it can be expected to get half the positives and half the negatives correct;

this yields the point (0.5, 0.5) in ROC space. If it guesses the positive class 90% of the time, it can be expected to

get 90% of the positives correct but its false positive rate will increase to 90% as well, yielding (0.9, 0.9) in ROC

space. Thus a random classifier will produce a ROC point that “slides” back and forth on the diagonal based on the

frequency with which it guesses the positive class. In order to get away from this diagonal into the upper triangular

region, the classifier must exploit some information in the data. In figure 2, C’s performance is virtually random. At

(0.7, 0.7), C may be said to be guessing the positive class 70% of the time,

Any classifier that appears in the lower right triangle performs worse than random guessing. This triangle is

therefore usually empty in ROC graphs. However, note that the decision space is symmetrical about the diagonal

4

[Fawcett, 2003]
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ROC curves

test set

True label:
POSITIVE
NEGATIVE

(sorted by classifier’s score)

more positive

Threshold 1:
2 TP
1 FP 

Threshold 1:
5 TP
3 FP 

Add a point for every possible threshold, and....
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ROC curves
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Figure 5: ROC and precision-recall curves under class skew.

if the fundamental classifier performance does not. ROC graphs are based upon TP rate and FP rate, in which each

dimension is a strict columnar ratio, so do not depend on class distributions.

To some researchers, large class skews and large changes in class distributions may seem contrived and unrealistic.

However, class skews of 101 and 102 are very common in real world domains, and skews up to 106 have been observed

in some domains (Clearwater & Stern, 1991; Fawcett & Provost, 1996; Kubat, Holte, & Matwin, 1998; Saitta &

Neri, 1998). Substantial changes in class distributions are not unrealistic either. For example, in medical decision

making epidemics may cause the incidence of a disease to increase over time. In fraud detection, proportions of fraud

varied significantly from month to month and place to place (Fawcett & Provost, 1997). Changes in a manufacturing

practice may cause the proportion of defective units produced by a manufacturing line to increase or decrease. In each

of these examples the prevalance of a class may change drastically without altering the fundamental characteristic

of the class, i.e., the target concept.

Precision and recall are common in information retrieval for evaluating retrieval (classification) performance

(Lewis, 1990, 1991). Precision-recall graphs are commonly used where static document sets can sometimes be

assumed; however, they are also used in dynamic environments such as web page retrieval, where the number of

8

[Fawcett, 2003]
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Class skew

TP FP

FN TN

True

Predicted

+ -

+

-

ROC curves insensitive to class skew.

TPR =
TP

TP + FN

FPR =
FP

FP + TN

=N=P
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Area under curve (AUC)
Sometimes you want a single number
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Figure 8: Two ROC graphs. The graph on the left shows the area under two ROC curves. The graph on the right
shows the area under the curves of a discrete classifier (A) and a probabilistic classifier (B).

collecting ROC points, the algorithm adds successive areas of trapezoids to Area. Finally, it divides by the total

possible area to scale the value to the unit square.

7 Averaging ROC curves

Although ROC curves may be used to evaluate classifiers, care should be taken when using them to make conclusions

about classifier superiority. Some researchers have assumed that an ROC graph may be used to select the best

classifiers simply by graphing them in ROC space and seeing which ones dominate. This is misleading; it is analogous

to taking the maximum of a set of accuracy figures from a single test set. Without a measure of variance we cannot

easily compare the classifiers.

Averaging ROC curves is easy if the original instances are available. Given test sets T1, T2, · · · , Tn, generated

from cross-validation or the bootstrap method, we can simply merge sort the instances together by their assigned

scores into one large test set TM . We then run an ROC curve generation algorithm such as algorithm 2 on TM and

plot the result. This yields the average expected ROC performance.

However, the primary reason for using multiple test sets is to derive a measure of variance, which this simple

merging does not provide. For this we need a more sophisticated method that samples the individual curves at

different points.

ROC space is two-dimensional, and any average is necessarily one-dimensional. ROC curves can be projected

onto a single dimension and averaged conventionally, but this leads to the question of whether the projection is

appropriate, or more precisely, whether it preserves characteristics of interest. The answer depends upon the reason

for averaging the curves. This section presents two methods for averaging ROC curves: vertical and threshold

averaging.

Figure 9a shows five ROC curves to be averaged. Each contains a thousand points and has some concavities.

Figure 9b shows the curve formed by merging the five test sets and computing their combined ROC curve. Figures 9b

and 9c show average curves formed by sampling the five individual ROC curves. The error bars are 95% confidence

intervals.

14

[Fawcett, 2003]
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3. Cross Validation
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A: Use a validation set.

•When you first get the data, put the test set 
away and don’t look at it.

• The validation set lets you compare the 
“tweaking” parameters of different algorithms.

This is a fine way to work, if you have lots of data.

Training TestingValidation
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Problem: You don’t have 
lots of data

This causes two problems:

• You don’t want to set aside a test set (waste of 
perfectly good data).

• There’s lots of variability in your estimate of the 
error.
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Cross-validation

Has several goals:

• Don’t “waste” examples by never using them for 
training

• Get some idea of variation due to training sets

• Allow tweaking classifier parameters without use of 
a separate validation set
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Cross-validation

• Randomly split data into K equal-sized subsets 
(called “folds”).  Call these D1, D2, ... Dk 

• For i = 1 to K

• Train on all D1, D2, ... Dk except Di

• Test on Di.  Let ei be testing error

• Final estimate of test error:

ê =
1

K

KX

i=1

ei
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Cross-validation (prettily)

Fold 1 Fold 2 Fold 3

Test

Test

Test

Train

Train

Train

1

2-5
2

1

3-5

3

4

5 1

2

Final error estimate: Mean of test error in each fold
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How to pick k?

• Bigger K (e.g., K=N called leave-one-out)

• Bigger training sets (good if training data is 
small)

• Smaller K means

• Bigger test sets (good)

• Less computationally expensive

• Less overlap in training sets

• I typically use 5 or 10

• N.B. Can use more than one fold for testing
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Comments about C-V

• Tune parameters of your learning algorithm via 
cross-validation error

• Note that the different training sets are (highly) 
dependent

• Sometimes need to be careful about exactly which 
data goes into training-test splits (e.g., fMRI data, 
University HTML pages)
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Some question about C-V

• I get 5 classifiers out. Which one is my “final” one 
for my problem?

• Let’s say I want to choose the pruning parameter 
for my decision tree. I use c-v. How do I then 
estimate the error of my final classifier?

Say I’m doing 5-fold cv.
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4. Evaluating clustering
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How to evaluate clustering?

• If you really knew what you wanted, you’d be doing 
classification instead of clustering.

• Option 1: Measure how well the clusters do for 
some other task (e.g., as features for a classifier, or 
for ranking documents in IR)

• Not always what you want to do. 

• Option 2: Measure “goodness of fit”

• Option 3: Compare to an external set of labels

Monday, 20 February 12

Evaluation for Clustering

Each example has features X, cluster label C, 
and “ground truth label Y

Suppose that we do have labeled data for evaluation, called 
“ground truth”, that we don’t use in the clustering 
algorithm.

(More for evaluating an algorithm than a clustering.)

C 2 {1, 2, . . . K}

Y 2 {1, 2, . . . J}

set of examples in cluster k

set of examples with true label jYj

Ck
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Purity
Essentially, your best possible accuracy if clusters are 
mapped to ground truth labels.

set of examples in cluster k

set of examples with true label jYj

Ck

Reminder:

Purity =
1

N

KX

k=1

max
j2[1,J]

|Ck \ Yj |

number of data pointsN
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Purity example

1 32Cluster

Purity is: 
5 + 4 + 3

6 + 5 + 5
=

12

16
= 0.75
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Problem with Purity

1 32Cluster

Alg A

Alg B

a) Try simple baselines
b) Look at multiple evaluation metrics

Lessons:

Both of these have the same purity, but Alg B is 
doing no better than predicting majority class.
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Rand Index
Consider pairwise decisions 

TP FP

FN TN
Clustering

same

different

Ground truth

same different

Now can compute P, R, F1

Accuracy in this table called: Rand Index

Monday, 20 February 12



5. Other issues in 
evaluation
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Ceiling effects

Decision tree 97%

AdaBoost 98%

Mystery algorithm 96%
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Ceiling effects

Decision tree 97%

AdaBoost 98%

Mystery algorithm 96%

Moral: If your test set is too easy, it won’t tell you 
anything about the algorithms.

Always compare to simpler baselines to evaluate how 
easy (or hard) the testing problem is.
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Ceiling effects

Decision tree 97%

AdaBoost 98%

Mystery algorithm 96%

Moral: If your test set is too easy, it won’t tell you 
anything about the algorithms.

Always compare to simpler baselines to evaluate how 
easy (or hard) the testing problem is.

Always ask yourself what chance performance would be.
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Floor effects

• Similarly, your problem could be so hard that no 
algorithm does well.

• Example: Stock picking. Here there are no experts.

• One way to get at this is inter-annotator 
agreement.
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Learning Curves
• It can be interesting to look at how learning performance 

differs as you get more data.

• This can tell you whether it’s worth spending money to 
gather more data.

• Some algorithms are better with small training sets, but 
worse with large ones.

Learning curves usually 
have this shape.  Why?

Number of training instances

Accuracy
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Learning Curves

Learning curves usually have this shape.  Why?

Number of training instances

Accuracy

You learn “easy” information from the first few examples

(e.g., word “Viagra” usually means the email is spam)
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