
Ensemble Methods
Charles Sutton

Data Mining and Exploration
Spring 2012

Friday, 27 January 12

Bias and Variance
Consider a regression problem

Suppose we care about the error at a particular

Y = f(X) + ✏ ✏ ⇠ N(0, �2)

f̂(x) = w>x

With an estimate regression function , e.g.,f̂

x0

L(y, f̂(x0)) = (y � f̂(x0))
2

Let’s think about the expected error:

E(L(y, f̂(x0))) =

Z 1

�1
p(y|x0)(y � f̂(x0))

2dy

Important: both y and are random! f̂

Friday, 27 January 12

Bias and Variance
Consider a regression problem

Y = f(X) + ✏ ✏ ⇠ N(0, �2)

Let’s think about the expected error:

E(L(y, f̂(x0))) = E(y � f̂(x0))
2

= �2 + Bias2(f̂(x0)) + V f̂(x0)

...after some algebra...

where
Bias(f̂(x0)) = E(f(x0) � f̂(x0))

expectation taken over both y and ̂f

Friday, 27 January 12

Bias and Variance

Like to minimize both, but often must trade off.

p(x, y)Data drawn from

Stable classification methods:
• Lower variance
• Higher bias

Flexible methods
• Higher variance
• Lower bias

Friday, 27 January 12

Bias and Variance

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 2

High Bias
Low Variance

Low Bias
High Variance

P
re

d
ic

ti
o
n

E
rr

o
r

Model Complexity

Training Sample

Test Sample

Low High

FIGURE 2.11. Test and training error as a function
of model complexity.

Figure from [Hastie, Tibshirani, and Friedman, 2009]
Friday, 27 January 12

Notation
x 2 Rn

h(x)

Feature vector:

Classifier output:

x1 = 0x1 = 1

x2 = 0x2 = 1

01

2/3

Ex:

2 {�1, 1}

h([0, 1, 1]) = 1

Friday, 27 January 12

What is an ensemble?
• A group of classifiers that vote (perhaps

weighted) on the answer

h(x) =

MX

i=1

�mhm(x)

weights
individual classifiers

Friday, 27 January 12

Why an ensemble?

• Smooth the variance of unstable classifiers

• Combine classifiers with different biases

• Different classifiers can “specialise” in
different parts of the input space

Friday, 27 January 12

Bagging

• We said decision trees are unstable

• Let’s generate a bunch of data sets, and
average the results!

h(x) =

MX

i=1

�mhm(x)

each data set
probability from

decision tree

Friday, 27 January 12

The bootstrap

• But where do we get all of those data sets?

• Crazy idea: Let’s get them from the training
data. Resample with replacement

Friday, 27 January 12

Example data
 IDX OUTLOOK TEMP HUMIDITY WIND PLAY
 1 sunny hot high weak no
 2 sunny hot high strong no
 3 overcast hot high weak yes
 4 rain mild high weak yes
 5 rain cool normal weak yes
 6 rain cool normal strong no
 7 overcast cool normal strong yes
 8 sunny mild high weak no
 9 sunny cool normal weak yes
 10 rain mild normal weak yes
 11 sunny mild normal strong yes
 12 overcast mild high strong yes
 13 overcast hot normal weak yes
 14 rain mild high strong no

Resampled
 IDX OUTLOOK TEMP HUMIDITY WIND PLAY
 1 sunny hot high weak no
 1 sunny hot high weak no
 3 overcast hot high weak yes
 4 rain mild high weak yes
 4 rain mild high weak yes
 6 rain cool normal strong no
 7 overcast cool normal strong yes
 7 overcast cool normal strong yes
 7 overcast cool normal strong yes
 7 overcast cool normal strong yes
 8 sunny mild high weak no
 10 rain mild normal weak yes
 11 sunny mild normal strong yes
 11 sunny mild normal strong yes

Friday, 27 January 12

Example data
 IDX OUTLOOK TEMP HUMIDITY WIND PLAY
 1 sunny hot high weak no
 2 sunny hot high strong no
 3 overcast hot high weak yes
 4 rain mild high weak yes
 5 rain cool normal weak yes
 6 rain cool normal strong no
 7 overcast cool normal strong yes
 8 sunny mild high weak no
 9 sunny cool normal weak yes
 10 rain mild normal weak yes
 11 sunny mild normal strong yes
 12 overcast mild high strong yes
 13 overcast hot normal weak yes
 14 rain mild high strong no

Resampled
 IDX OUTLOOK TEMP HUMIDITY WIND PLAY
 1 sunny hot high weak no
 1 sunny hot high weak no
 3 overcast hot high weak yes
 4 rain mild high weak yes
 4 rain mild high weak yes
 6 rain cool normal strong no
 7 overcast cool normal strong yes
 7 overcast cool normal strong yes
 7 overcast cool normal strong yes
 7 overcast cool normal strong yes
 8 sunny mild high weak no
 10 rain mild normal weak yes
 11 sunny mild normal strong yes
 11 sunny mild normal strong yes

|OUTLOOK: rain,sunny

TEMP: cool,hot

OUTLOOK: rain
HUMIDITY: highno

yes

yes

Run decision tree learning

Friday, 27 January 12

Example data
 IDX OUTLOOK TEMP HUMIDITY WIND PLAY
 1 sunny hot high weak no
 2 sunny hot high strong no
 3 overcast hot high weak yes
 4 rain mild high weak yes
 5 rain cool normal weak yes
 6 rain cool normal strong no
 7 overcast cool normal strong yes
 8 sunny mild high weak no
 9 sunny cool normal weak yes
 10 rain mild normal weak yes
 11 sunny mild normal strong yes
 12 overcast mild high strong yes
 13 overcast hot normal weak yes
 14 rain mild high strong no

Resampled
 IDX OUTLOOK TEMP HUMIDITY WIND PLAY
 1 sunny hot high weak no
 1 sunny hot high weak no
 3 overcast hot high weak yes
 4 rain mild high weak yes
 4 rain mild high weak yes
 6 rain cool normal strong no
 7 overcast cool normal strong yes
 7 overcast cool normal strong yes
 7 overcast cool normal strong yes
 7 overcast cool normal strong yes
 8 sunny mild high weak no
 10 rain mild normal weak yes
 11 sunny mild normal strong yes
 11 sunny mild normal strong yes

|OUTLOOK: rain,sunny

TEMP: cool,hot

OUTLOOK: rain
HUMIDITY: highno

yes

yes

Run decision tree learning

|HUMIDITY: high

OUTLOOK: rain

WIND: strong

no

yes

Friday, 27 January 12

Example data
 IDX OUTLOOK TEMP HUMIDITY WIND PLAY
 1 sunny hot high weak no
 2 sunny hot high strong no
 3 overcast hot high weak yes
 4 rain mild high weak yes
 5 rain cool normal weak yes
 6 rain cool normal strong no
 7 overcast cool normal strong yes
 8 sunny mild high weak no
 9 sunny cool normal weak yes
 10 rain mild normal weak yes
 11 sunny mild normal strong yes
 12 overcast mild high strong yes
 13 overcast hot normal weak yes
 14 rain mild high strong no

Resampled

|OUTLOOK: rain,sunny

TEMP: cool,hot

OUTLOOK: rain
HUMIDITY: highno

yes

yes

|HUMIDITY: high

OUTLOOK: rain

WIND: strong

no

yes

....

[one tree for each
resampled
data set]

Friday, 27 January 12

Back to bagging

INPUT: D denotes training data, of size N
for j from 1 . . . M do

Sample data Dj of size N from D with replacement
Train classifier hj on Dj

end for
Return a new classifier h that classifies new examples x
as h(x) =

PM
j=1 hj(x)

Friday, 27 January 12

How bagging can help

BAGGING PREDICTORS 125

Table 1. Data Set Summary

Data Set # Samples # Variables # Classes

waveform 300 21 3
heart 1395 16 2
breast cancer 699 9 2
ionosphere 351 34 2
diabetes 768 8 2
glass 214 9 6
soybean 683 35 t 9

In all runs the following procedure was used:

i) The data set is randomly divided into a test set T and a learning set £ . In the real data
sets T is 10% of the data. In the simulated waveform data, 1800 samples are generated.
Z; consists of 300 of these, and T the remainder.

ii) A classification tree is constructed from E using lO-fold cross-validation. Running the
test set T down this tree gives the misclassification rate es(£, T).

iii) A bootstrap sample £tz is selected from £, and a tree grown using £B. The original
learning set £ is used as test set to select the best pruned subtree (see Section 4.3). This
is repeated 50 times giving tree classifiers (Pl (x) , . . . , 050 (x) .

iv) If (j~, x,~) E T , then the estimated class of Xn is that class having the plurality in
01(x~) , . . . , 05o(x~). If there is a tie, the estimated class is the one with the lowest
class label. The proportion of times the estimated class differs from the true class is the
bagging misclassification rate eB(£, T).

v) The random division of the data into £ and T is repeated 100 times and the reported
#s, gB are the averages over the 100 iterations. For the waveform data, 1800 new cases
are generated at each iteration. Standard errors of #s and gB over the 100 iterations are
also computed.

Table 2 gives the values of es , eB, and Table 3 their estimated standard errors.

Table 2. Misclassification Rates (%)

Data Set e s eB Decrease

waveform 29.1 19.3 34%
heart 4.9 2.8 43%
breast cancer 5.9 3.7 37%
ionosphere I 1.2 7.9 29%
diabetes 25.3 23.9 6%
glass 30.4 23.6 22%
soybean 8.6 6.8 21%

[Breiman, 1996]
S: decision tree, B: bagging

Friday, 27 January 12

Example: Glass data set
Standard data set from UCI ML repository

7 classes, such as:
• building windows
• vehicle windows
• headlamps

10 features such as
• % Na by weight
• % Al by weight
• refractive index

 RI Na Mg Al CLASS
1.51793 12.79 3.5 1.12 ... building (float)
1.51643 12.16 3.52 1.35 ... vehicle (float)
1.51793 13.21 3.48 1.41 ... building (float)
 ...

Friday, 27 January 12

When to bag

• Bagging decision trees usually helps

• (but random forests, boosting better)

• Classifier needs to be unstable

• Bagging 1-nearest neighbour not so helpful

Friday, 27 January 12

Boosting

• Idea was to transform a “weak learner”
into a strong one

• The only requirement for a weak learner is
that its accuracy is slightly above 50% (in
two-class case)

• Examples of weak learners:

• decision “stumps”, naive Bayes

Friday, 27 January 12

Ideas behind boosting

• Boosting is a general term for methods that
try to “amplify” a weak learner into a
better one.

• Rather than picking different training sets,
reweight the training set

• Pick the weights based on which examples
were misclassified previously

Friday, 27 January 12

Weighted Examples
Up until now, our data sets have been

Now we need to handle weighted data sets

Most classifiers can handle this, no problem.
(how would decision trees?)

D = {D(i),xi, yi | i 2 [1, N]}

D = {xi, yi | i 2 [1, N]}

where is a distribution over instancesD(i)

D(i) � 0
NX

i=1

D(i) = 1

Friday, 27 January 12

Given: where ,
Initialize .
For :

Train base learner using distribution .
Get base classifier .
Choose .
Update:

where is a normalization factor (chosen so that will be a distribu-
tion).

Output the final classifier:

Figure 1: The boosting algorithm AdaBoost.

2 AdaBoost

Working in Valiant’s PAC (probably approximately correct) learning model [75],
Kearns and Valiant [41, 42] were the first to pose the question of whether a “weak”
learning algorithm that performs just slightly better than random guessing can be
“boosted” into an arbitrarily accurate “strong” learning algorithm. Schapire [66]
came up with the first provable polynomial-time boosting algorithm in 1989. A
year later, Freund [26] developed a much more efficient boosting algorithm which,
although optimal in a certain sense, nevertheless suffered like Schapire’s algorithm
from certain practical drawbacks. The first experiments with these early boosting
algorithms were carried out by Drucker, Schapire and Simard [22] on an OCR task.

The AdaBoost algorithm, introduced in 1995 by Freund and Schapire [32],
solved many of the practical difficulties of the earlier boosting algorithms, and is
the focus of this paper. Pseudocode for AdaBoost is given in Fig. 1 in the slightly
generalized form given by Schapire and Singer [70]. The algorithm takes as input
a training set where each belongs to some domain or
instance space , and each label is in some label set . For most of this paper,
we assume ; in Section 7, we discuss extensions to the multiclass
case. AdaBoost calls a given weak or base learning algorithm repeatedly in a series

3

AdaBoost.M1

Friday, 27 January 12

Updating weights
Given: where ,
Initialize .
For :

Train base learner using distribution .
Get base classifier .
Choose .
Update:

where is a normalization factor (chosen so that will be a distribu-
tion).

Output the final classifier:

Figure 1: The boosting algorithm AdaBoost.

2 AdaBoost

Working in Valiant’s PAC (probably approximately correct) learning model [75],
Kearns and Valiant [41, 42] were the first to pose the question of whether a “weak”
learning algorithm that performs just slightly better than random guessing can be
“boosted” into an arbitrarily accurate “strong” learning algorithm. Schapire [66]
came up with the first provable polynomial-time boosting algorithm in 1989. A
year later, Freund [26] developed a much more efficient boosting algorithm which,
although optimal in a certain sense, nevertheless suffered like Schapire’s algorithm
from certain practical drawbacks. The first experiments with these early boosting
algorithms were carried out by Drucker, Schapire and Simard [22] on an OCR task.

The AdaBoost algorithm, introduced in 1995 by Freund and Schapire [32],
solved many of the practical difficulties of the earlier boosting algorithms, and is
the focus of this paper. Pseudocode for AdaBoost is given in Fig. 1 in the slightly
generalized form given by Schapire and Singer [70]. The algorithm takes as input
a training set where each belongs to some domain or
instance space , and each label is in some label set . For most of this paper,
we assume ; in Section 7, we discuss extensions to the multiclass
case. AdaBoost calls a given weak or base learning algorithm repeatedly in a series

3

err =
NX

i=1

Dt(i)I(yi 6= ht(xi))

↵t =
1

2
log

1 � err

err

Use the following “magic” choice

Friday, 27 January 12

Ex: Boosted decision stumps

y x1 x2 x3

1 1 1 0
-1 1 0 1
-1 0 0 1
1 0 0 1
1 0 1 1
-1 1 0 0

D1(i) = 1/6 for i 2 {1, 2, . . . 6}

Let’s do the first iteration of boosting on this data set

Friday, 27 January 12

Ex: Boosted decision stumps

y x1 x2 x3

1 1 1 0
-1 1 0 1
-1 0 0 1
1 0 0 1
1 0 1 1
-1 1 0 0

x1 = 0x1 = 1

1/3 2/3p(y = +1)

class -1 +1

h1

D1(i) = 1/6 for i 2 {1, 2, . . . 6}

Friday, 27 January 12

Ex: Boosted decision stumps

y x1 x2 x3

1 1 1 0
-1 1 0 1
-1 0 0 1
1 0 0 1
1 0 1 1
-1 1 0 0

x1 = 0x1 = 1

1/3 2/3p(y = +1)

class -1 +1

h1

D1(i) = 1/6 for i 2 {1, 2, . . . 6}

X

X

err = 0.3333

↵t =
1

2
log

1 � err

err
=

1

2
log 2 = 0.3465

exp{↵t} = 1.414 exp{�↵t} = 0.707

Friday, 27 January 12

Ex: Boosted decision stumps

y x1 x2 x3

1 1 1 0
-1 1 0 1
-1 0 0 1
1 0 0 1
1 0 1 1
-1 1 0 0

X

X

exp{↵t} = 1.414 exp{�↵t} = 0.707

exp{�↵1yih1(xi)} D1(i)

1.414
0.707
1.414
0.707
0.707
0.707

SUM=5.65

0.25
0.125
0.25
0.125
0.125
0.125

Friday, 27 January 12

Ex: Iteration 2

y x1 x2 x3

1 1 1 0
-1 1 0 1
-1 0 0 1
1 0 0 1
1 0 1 1
-1 1 0 0

D1(i)

0.25
0.125
0.25
0.125
0.125
0.125

Now induce another decision stump,
with examples weighted by D1

x1 = 1 x1 = 0

0.5 0.5p(y = +1)

e.g., if split on x1

Friday, 27 January 12

↵t = log
1 � err

err

0.0 0.2 0.4 0.6 0.8 1.0

-4
-2

0
2

4

p

al
ph
a

Friday, 27 January 12

Loss Functions

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 10

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0 Misclassification

Exponential
Binomial Deviance
Squared Error
Support Vector

L
o
ss

y · f

FIGURE 10.4. Loss functions for two-class classi-
fication. The response is y = ±1; the prediction is
f , with class prediction sign(f). The losses are mis-
classification: I(sign(f) != y); exponential: exp(−yf);
binomial deviance: log(1 + exp(−2yf)); squared er-
ror: (y − f)2; and support vector: (1 − yf)+ (see Sec-
tion 12.3). Each function has been scaled so that it
passes through the point (0, 1).

Friday, 27 January 12

Loss functions
Can view AdaBoost as approximately
minimizing prediction error

that minimizes training error

i.e., We want to learn an ensemble

H(x) =

TX

t=1

↵tht(x)

Err =
1

N

NX

i=1

I(yi 6= H(xi))

with respect to

Difficult to optimize directly (e.g., why not gradient descent?)
so we approximate...

{↵t}, {ht}

Friday, 27 January 12

Loss functions
AdaBoost trick: Minimize upper bound on error

We still can’t minimise this exactly, so be greedy.
Alternately minimise with respect to alpha and h_t.

1

N

NX

i=1

I(yi 6= H(xi)) 
1

N

NX

i=1

exp{�yiH(xi)}

=
1

N

NX

i=1

exp

(
�yi

X

t

↵tht(xi)

)

:= L(↵1, ↵2, . . . , ↵t, h1, h2, . . . ht)

=
Y

t

Zt

(!!!)

Friday, 27 January 12

Given: where ,
Initialize .
For :

Train base learner using distribution .
Get base classifier .
Choose .
Update:

where is a normalization factor (chosen so that will be a distribu-
tion).

Output the final classifier:

Figure 1: The boosting algorithm AdaBoost.

2 AdaBoost

Working in Valiant’s PAC (probably approximately correct) learning model [75],
Kearns and Valiant [41, 42] were the first to pose the question of whether a “weak”
learning algorithm that performs just slightly better than random guessing can be
“boosted” into an arbitrarily accurate “strong” learning algorithm. Schapire [66]
came up with the first provable polynomial-time boosting algorithm in 1989. A
year later, Freund [26] developed a much more efficient boosting algorithm which,
although optimal in a certain sense, nevertheless suffered like Schapire’s algorithm
from certain practical drawbacks. The first experiments with these early boosting
algorithms were carried out by Drucker, Schapire and Simard [22] on an OCR task.

The AdaBoost algorithm, introduced in 1995 by Freund and Schapire [32],
solved many of the practical difficulties of the earlier boosting algorithms, and is
the focus of this paper. Pseudocode for AdaBoost is given in Fig. 1 in the slightly
generalized form given by Schapire and Singer [70]. The algorithm takes as input
a training set where each belongs to some domain or
instance space , and each label is in some label set . For most of this paper,
we assume ; in Section 7, we discuss extensions to the multiclass
case. AdaBoost calls a given weak or base learning algorithm repeatedly in a series

3

AdaBoost.M1

↵t =
1

2
log

1 � err

err

Minimizes L wrt ht

Minimizes L wrt ↵t

Friday, 27 January 12

Boosting can help

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 10

0 100 200 300 400

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Boosting Iterations

Te
st

 E
rro

r

Single Stump

244 Node Tree

FIGURE 10.2. Simulated data (10.2): test error rate
for boosting with stumps, as a function of the number
of iterations. Also shown are the test error rate for a
single stump, and a 244-node classification tree.

Friday, 27 January 12

Boosting can help

0 5 10 15 20 25 30
0

5

10

15

20

25

30

C
4.

5

0 5 10 15 20 25 30
boosting stumps boosting C4.5

Figure 3: Comparison of C4.5 versus boosting stumps and boosting C4.5 on a set
of 27 benchmark problems as reported by Freund and Schapire [30]. Each point
in each scatterplot shows the test error rate of the two competing algorithms on
a single benchmark. The -coordinate of each point gives the test error rate (in
percent) of C4.5 on the given benchmark, and the -coordinate gives the error rate
of boosting stumps (left plot) or boosting C4.5 (right plot). All error rates have
been averaged over multiple runs.

AdaBoost to four other methods are shown in Fig. 4. In nearly all of these ex-
periments and for all of the performance measures tested, boosting performed as
well or significantly better than the other methods tested. As shown in Fig. 5, these
experiments also demonstrated the effectiveness of using confidence-rated predic-
tions [70], mentioned in Section 3 as a means of speeding up boosting.

Boosting has also been applied to text filtering [72] and routing [39], “ranking”
problems [28], learning problems arising in natural language processing [1, 12, 25,
38, 55, 78], image retrieval [74], medical diagnosis [53], and customer monitoring
and segmentation [56, 57].

Rochery et al.’s [64, 65] method of incorporating human knowledge into boost-
ing, described in Section 8, was applied to two speech categorization tasks. In this
case, the prior knowledge took the form of a set of hand-built rules mapping key-
words to predicted categories. The results are shown in Fig. 6.

The final classifier produced by AdaBoost when used, for instance, with a
decision-tree base learning algorithm, can be extremely complex and difficult to
comprehend. With greater care, a more human-understandable final classifier can
be obtained using boosting. Cohen and Singer [11] showed how to design a base

14

Friday, 27 January 12

On glass data

Standard DT 61%
Bagged DT 68%
AdaBoost 70%

Friday, 27 January 12

Differences between
bagging and boosting

• Bagging for unstable (i.e., high variance)
classifiers

• Boosting often useful for biased classifiers
as well

• Both improve performance

• Both need to choose base classifier

• Boosting typically performs better

• Both lose interpretability
Friday, 27 January 12

Heterogeneous
ensembles

• Data mining competitions usually won by
ensemble methods (e.g., Netflix)

• Often the classifiers are completely
heterogeneous

Friday, 27 January 12

Examinable reading (on Web site):

Rob Shapire, The Boosting Approach to Machine Learning
(Sections 4-8 not examinable)

Leo Breiman, Bagging predictors, Machine Learning, 1996

Friday, 27 January 12

