

Charles Sutton Data Mining and Exploration Spring 2012

Bias and Variance

Consider a regression problem

 $Y = f(X) + \epsilon \qquad \qquad \epsilon \sim N(0, \sigma^2)$

With an estimate regression function \hat{f} , e.g.,

$$\hat{f}(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x}$$

Suppose we care about the error at a particular \mathbf{x}_0

$$L(y, \hat{f}(\mathbf{x}_0)) = (y - \hat{f}(\mathbf{x}_0))^2$$

Let's think about the expected error:

$$E(L(y,\hat{f}(\mathbf{x}_0))) = \int_{-\infty}^{\infty} p(y|x_0)(y-\hat{f}(\mathbf{x}_0))^2 dy$$

Important: both y and \hat{f} are random!

Bias and Variance

Consider a regression problem

 $Y = f(X) + \epsilon \qquad \qquad \epsilon \sim N(0, \sigma^2)$

Let's think about the expected error:

$$E(L(y, \hat{f}(\mathbf{x}_0))) = E(y - \hat{f}(\mathbf{x}_0))^2$$

...after some algebra...

$$= \sigma^2 + \operatorname{Bias}^2(\hat{f}(\mathbf{x}_0)) + V\hat{f}(\mathbf{x}_0)$$

where

Friday, 27 January 12

$$\operatorname{Bias}(\hat{f}(\mathbf{x}_0)) = E(f(\mathbf{x}_0) - \hat{f}(\mathbf{x}_0))$$

expectation taken over both y and \hat{f}

Bias and Variance

Stable classification methods:

- Lower variance
- Higher bias

Flexible methods

- Higher variance
- Lower bias

Like to minimize both, but often must trade off.

Data drawn from $p(\mathbf{x},y)$

What is an ensemble?

• A group of classifiers that vote (perhaps weighted) on the answer

Why an ensemble?

- Smooth the variance of unstable classifiers
- Combine classifiers with different biases
- Different classifiers can "specialise" in different parts of the input space

Friday, 27 January 12

Bagging

- We said decision trees are unstable
- Let's generate a bunch of data sets, and average the results!

$$h(x) = \sum_{i=1}^{M} \beta_m h_m(x)$$
each data set
probability from
decision tree

Friday, 27 January 12

The bootstrap

- But where do we get all of those data sets?
- Crazy idea: Let's get them from the training data. Resample with replacement

Example data	Resampled	Example data	Resampled
IDX OUTLOOK TEMP HUMIDITY WIND PLAY 1 sunny hot high weak no 2 sunny hot high strong no 3 overcast hot high weak yes 4 rain mild high weak yes 5 rain cool normal weak yes 6 rain cool normal strong no 7 overcast cool normal strong yes 8 sunny mild high weak no 9 sunny cool normal weak yes 10 rain mild normal weak yes 11 sunny mild normal strong yes	IDX OUTLOOK TEMP HUMIDITY WIND PLAY 1 sunny hot high weak no 1 sunny hot high weak no 3 overcast hot high weak yes 4 rain mild high weak yes 6 rain cool normal strong no 7 overcast cool normal strong yes 7 overcast cool normal strong yes 8 sunny mild high weak no	IDX OUTLOOK TEMP HUMIDITY WIND PLAY 1 sunny hot high weak no 2 sunny hot high strong no 3 overcast hot high weak yes 4 rain mild high weak yes 5 rain cool normal weak yes 6 rain cool normal strong no 7 overcast cool normal strong yes 8 sunny mild high weak no 9 sunny cool normal weak yes 10 rain mild normal weak yes 11 sunny mild normal strong yes	IDX OUTLOOK TEMP HUMIDITY WIND PLAY 1 sunny hot high weak no 1 sunny hot high weak no 3 overcast hot high weak yes 4 rain mild high weak yes 6 rain cool normal strong no 7 overcast cool normal strong yes 7 overcast cool normal strong yes 7 overcast cool normal strong yes 7 overcast cool normal strong yes 8 sunny mild high weak no
12 overcast mildhigh strong yes13 overcast hotnormal14rain mildhigh strongno	10 rain mild normal weak yes 11 sunny mild normal strong yes 11 sunny mild normal strong yes	12 overcast mildhigh strong yes13 overcast hotnormal14rain mildhigh strongno	10 rain mild normal weak yes 11 sunny mild normal strong yes 11 sunny mild normal strong yes
		Rur	decision tree learning
			TEMP: pool,hot yes
Friday, 27 January 12		Friday, 27 January 12	

Back to bagging

for j from 1...M do Sample data D_j of size N from D with replacement Train classifier h_j on D_j end for Return a new classifier h that classifies new examples x as $h(x) = \sum_{j=1}^{M} h_j(x)$

INPUT: D denotes training data, of size N

How bagging can help

Table 2. Misclassification Rates (%)

Data Set	\bar{e}_S	\bar{e}_B	Decrease
waveform	29.1	19.3	34%
heart	4.9	2.8	43%
breast cancer	5.9	3.7	37%
ionosphere	11.2	7.9	29%
diabetes	25.3	23.9	6%
glass	30.4	23.6	22%
soybean	8.6	6.8	21%

S: decision tree, B: bagging

[Breiman, 1996]

Example: Glass data set Standard data set from UCI ML repository	When to bag	
 7 classes, such as: building windows vehicle windows headlamps 10 features such as % Na by weight % Al by weight refractive index 	 Bagging decision trees usually helps (but random forests, boosting better) Classifier needs to be unstable 	
RI Na Mg Al CLASS 1.51793 12.79 3.5 1.12 building (float) 1.51643 12.16 3.52 1.35 vehicle (float) 1.51793 13.21 3.48 1.41 building (float) 	Bagging I-nearest neighbour not so helpful	

Boosting

- Idea was to transform a "weak learner" into a strong one
- The only requirement for a weak learner is that its accuracy is slightly above 50% (in two-class case)
- Examples of weak learners:
 - decision "stumps", naive Bayes

Ideas behind boosting

- Boosting is a general term for methods that try to "amplify" a weak learner into a better one.
- Rather than picking different training sets, reweight the training set
- Pick the weights based on which examples were misclassified previously

Updating weights

• Choose $\alpha_t \in \mathbb{R}$.

• Update:

$$D_{t+1}(i) = \frac{D_t(i)\exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is a normalization factor (chosen so that D_{t+1} will be a distribution).

$$\operatorname{err} = \sum_{i=1}^{N} D_t(i) I(y_i \neq h_t(x_i))$$

Use the following "magic" choice

$$\alpha_t = \frac{1}{2} \log \frac{1 - \operatorname{err}}{\operatorname{err}}$$

Ex: Boosted decision stumps

y	x_1	x_2	x_3
1	1	1	0
-1	1	0	1
-1	0	0	1
1	0	0	1
1	0	1	1
-1	1	0	0

$$D_1(i) = 1/6$$
 for $i \in \{1, 2, \dots 6\}$

Let's do the first iteration of boosting on this data set

Loss functions

Can view AdaBoost as approximately minimizing prediction error

i.e., We want to learn an ensemble

$$H(x) = \sum_{t=1}^{1} \alpha_t h_t(x)$$

that minimizes training error

$$\operatorname{Err} = \frac{1}{N} \sum_{i=1}^{N} I(y_i \neq H(x_i))$$

with respect to $\{\alpha_t\}, \{h_t\}$

Difficult to optimize directly (e.g., why not gradient descent?) so we approximate...

Loss functions

AdaBoost trick: Minimize upper bound on error

$$\frac{1}{N}\sum_{i=1}^{N}I(y_i \neq H(x_i)) \leq \frac{1}{N}\sum_{i=1}^{N}\exp\{-y_iH(x_i)\}$$
$$= \frac{1}{N}\sum_{i=1}^{N}\exp\left\{-y_i\sum_t\alpha_th_t(x_i)\right\} = \prod_t Z_t$$
$$:= L(\alpha_1, \alpha_2, \dots, \alpha_t, h_1, h_2, \dots, h_t) \qquad (!!!)$$

We still can't minimise this exactly, so be greedy. Alternately minimise with respect to alpha and h_t.

Friday, 27 January 12

On glass data

Standard DT	61%
Bagged DT	68%
AdaBoost	70%

Differences between bagging and boosting

- Bagging for unstable (i.e., high variance) classifiers
- Boosting often useful for biased classifiers as well
- Both improve performance
- Both need to choose base classifier
- Boosting typically performs better
- Both lose interpretability

Heterogeneous ensembles

- Data mining competitions usually won by ensemble methods (e.g., Netflix)
- Often the classifiers are completely heterogeneous

Friday, 27 January 12

Examinable reading (on Web site):

Rob Shapire, The Boosting Approach to Machine Learning (Sections 4-8 not examinable)

Leo Breiman, Bagging predictors, Machine Learning, 1996