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Bias and Variance
Consider a regression problem

Suppose we care about the error at a particular

Y = f(X) + ✏ ✏ ⇠ N(0, �2)

f̂(x) = w>x

With an estimate regression function  , e.g.,f̂

x0

L(y, f̂(x0)) = (y � f̂(x0))
2

Let’s think about the expected error:

E(L(y, f̂(x0))) =

Z 1

�1
p(y|x0)(y � f̂(x0))

2dy

Important: both y and   are random! f̂
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Bias and Variance
Consider a regression problem

Y = f(X) + ✏ ✏ ⇠ N(0, �2)

Let’s think about the expected error:

E(L(y, f̂(x0))) = E(y � f̂(x0))
2

= �2 + Bias2(f̂(x0)) + V f̂(x0)

...after some algebra...

where
Bias(f̂(x0)) = E(f(x0) � f̂(x0))

expectation taken over both y and   ̂f
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Bias and Variance

Like to minimize both, but often must trade off.

p(x, y)Data drawn from

Stable classification methods:
• Lower variance
• Higher bias

Flexible methods
• Higher variance
• Lower bias
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Bias and Variance

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 2
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FIGURE 2.11. Test and training error as a function
of model complexity.

Figure from [Hastie, Tibshirani, and Friedman, 2009] 
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Notation
x 2 Rn

h(x)

Feature vector:

Classifier output:

x1 = 0x1 = 1

x2 = 0x2 = 1

01

2/3

Ex:

2 {�1, 1}

h([0, 1, 1]) = 1
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What is an ensemble?
• A group of classifiers that vote (perhaps 

weighted) on the answer

h(x) =

MX

i=1

�mhm(x)

weights
individual classifiers
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Why an ensemble?

• Smooth the variance of unstable classifiers

• Combine classifiers with different biases

• Different classifiers can “specialise” in 
different parts of the input space 
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Bagging

• We said decision trees are unstable

• Let’s generate a bunch of data sets, and 
average the results!

h(x) =

MX

i=1

�mhm(x)

each data set
probability from

decision tree
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The bootstrap

• But where do we get all of those data sets?

• Crazy idea: Let’s get them from the training 
data. Resample with replacement
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Example data
 IDX  OUTLOOK TEMP HUMIDITY   WIND PLAY
   1    sunny  hot     high   weak   no
   2    sunny  hot     high strong   no
   3 overcast  hot     high   weak  yes
   4     rain mild     high   weak  yes
   5     rain cool   normal   weak  yes
   6     rain cool   normal strong   no
   7 overcast cool   normal strong  yes
   8    sunny mild     high   weak   no
   9    sunny cool   normal   weak  yes
  10     rain mild   normal   weak  yes
  11    sunny mild   normal strong  yes
  12 overcast mild     high strong  yes
  13 overcast  hot   normal   weak  yes
  14     rain mild     high strong   no

Resampled
 IDX  OUTLOOK TEMP HUMIDITY   WIND PLAY
   1    sunny  hot     high   weak   no
   1    sunny  hot     high   weak   no
   3 overcast  hot     high   weak  yes
   4     rain mild     high   weak  yes
   4     rain mild     high   weak  yes
   6     rain cool   normal strong   no
   7 overcast cool   normal strong  yes
   7 overcast cool   normal strong  yes
   7 overcast cool   normal strong  yes
   7 overcast cool   normal strong  yes
   8    sunny mild     high   weak   no
  10     rain mild   normal   weak  yes
  11    sunny mild   normal strong  yes
  11    sunny mild   normal strong  yes
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Example data
 IDX  OUTLOOK TEMP HUMIDITY   WIND PLAY
   1    sunny  hot     high   weak   no
   2    sunny  hot     high strong   no
   3 overcast  hot     high   weak  yes
   4     rain mild     high   weak  yes
   5     rain cool   normal   weak  yes
   6     rain cool   normal strong   no
   7 overcast cool   normal strong  yes
   8    sunny mild     high   weak   no
   9    sunny cool   normal   weak  yes
  10     rain mild   normal   weak  yes
  11    sunny mild   normal strong  yes
  12 overcast mild     high strong  yes
  13 overcast  hot   normal   weak  yes
  14     rain mild     high strong   no

Resampled
 IDX  OUTLOOK TEMP HUMIDITY   WIND PLAY
   1    sunny  hot     high   weak   no
   1    sunny  hot     high   weak   no
   3 overcast  hot     high   weak  yes
   4     rain mild     high   weak  yes
   4     rain mild     high   weak  yes
   6     rain cool   normal strong   no
   7 overcast cool   normal strong  yes
   7 overcast cool   normal strong  yes
   7 overcast cool   normal strong  yes
   7 overcast cool   normal strong  yes
   8    sunny mild     high   weak   no
  10     rain mild   normal   weak  yes
  11    sunny mild   normal strong  yes
  11    sunny mild   normal strong  yes

|OUTLOOK: rain,sunny

TEMP: cool,hot

OUTLOOK: rain
HUMIDITY: highno

yes

yes

Run decision tree learning
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Example data
 IDX  OUTLOOK TEMP HUMIDITY   WIND PLAY
   1    sunny  hot     high   weak   no
   2    sunny  hot     high strong   no
   3 overcast  hot     high   weak  yes
   4     rain mild     high   weak  yes
   5     rain cool   normal   weak  yes
   6     rain cool   normal strong   no
   7 overcast cool   normal strong  yes
   8    sunny mild     high   weak   no
   9    sunny cool   normal   weak  yes
  10     rain mild   normal   weak  yes
  11    sunny mild   normal strong  yes
  12 overcast mild     high strong  yes
  13 overcast  hot   normal   weak  yes
  14     rain mild     high strong   no

Resampled
 IDX  OUTLOOK TEMP HUMIDITY   WIND PLAY
   1    sunny  hot     high   weak   no
   1    sunny  hot     high   weak   no
   3 overcast  hot     high   weak  yes
   4     rain mild     high   weak  yes
   4     rain mild     high   weak  yes
   6     rain cool   normal strong   no
   7 overcast cool   normal strong  yes
   7 overcast cool   normal strong  yes
   7 overcast cool   normal strong  yes
   7 overcast cool   normal strong  yes
   8    sunny mild     high   weak   no
  10     rain mild   normal   weak  yes
  11    sunny mild   normal strong  yes
  11    sunny mild   normal strong  yes

|OUTLOOK: rain,sunny

TEMP: cool,hot

OUTLOOK: rain
HUMIDITY: highno

yes

yes

Run decision tree learning

|HUMIDITY: high

OUTLOOK: rain

WIND: strong

no

yes
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Example data
 IDX  OUTLOOK TEMP HUMIDITY   WIND PLAY
   1    sunny  hot     high   weak   no
   2    sunny  hot     high strong   no
   3 overcast  hot     high   weak  yes
   4     rain mild     high   weak  yes
   5     rain cool   normal   weak  yes
   6     rain cool   normal strong   no
   7 overcast cool   normal strong  yes
   8    sunny mild     high   weak   no
   9    sunny cool   normal   weak  yes
  10     rain mild   normal   weak  yes
  11    sunny mild   normal strong  yes
  12 overcast mild     high strong  yes
  13 overcast  hot   normal   weak  yes
  14     rain mild     high strong   no

Resampled

|OUTLOOK: rain,sunny

TEMP: cool,hot

OUTLOOK: rain
HUMIDITY: highno

yes

yes

|HUMIDITY: high

OUTLOOK: rain

WIND: strong

no

yes

....

[one tree for each 
resampled
data set]
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Back to bagging

INPUT: D denotes training data, of size N
for j from 1 . . . M do

Sample data Dj of size N from D with replacement
Train classifier hj on Dj

end for
Return a new classifier h that classifies new examples x
as h(x) =

PM
j=1 hj(x)
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How bagging can help

BAGGING PREDICTORS 125 

Table 1. Data Set Summary 

Data Set # Samples # Variables # Classes 

waveform 300 21 3 
heart 1395 16 2 
breast cancer 699 9 2 
ionosphere 351 34 2 
diabetes 768 8 2 
glass 214 9 6 
soybean 683 35 t 9 

In all runs the following procedure was used: 

i) The data set is randomly divided into a test set T and a learning set £ .  In the real data 
sets T is 10% of the data. In the simulated waveform data, 1800 samples are generated. 
Z; consists of 300 of  these, and T the remainder. 

ii) A classification tree is constructed from E using lO-fold cross-validation. Running the 
test set T down this tree gives the misclassification rate es(£,  T). 

iii) A bootstrap sample £tz is selected from £,  and a tree grown using £B.  The original 
learning set £ is used as test set to select the best pruned subtree (see Section 4.3). This 
is repeated 50 times giving tree classifiers (Pl ( x ) , . . . ,  050 (x) .  

iv) If ( j~,  x,~) E T ,  then the estimated class of Xn is that class having the plurality in 
01(x~) , . . . ,  05o(x~). If  there is a tie, the estimated class is the one with the lowest 
class label. The proportion of times the estimated class differs from the true class is the 
bagging misclassification rate eB(£, T). 

v) The random division of the data into £ and T is repeated 100 times and the reported 
#s,  gB are the averages over the 100 iterations. For the waveform data, 1800 new cases 
are generated at each iteration. Standard errors of #s and gB over the 100 iterations are 
also computed. 

Table 2 gives the values of es ,  eB, and Table 3 their estimated standard errors. 

Table 2. Misclassification Rates (%) 

Data Set e s  eB Decrease 

waveform 29.1 19.3 34% 
heart 4.9 2.8 43% 
breast cancer 5.9 3.7 37% 
ionosphere I 1.2 7.9 29% 
diabetes 25.3 23.9 6% 
glass 30.4 23.6 22% 
soybean 8.6 6.8 21% 

[Breiman, 1996]
S: decision tree, B: bagging
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Example: Glass data set
Standard data set from UCI ML repository

7 classes, such as:
• building windows
• vehicle windows
• headlamps

10 features such as
• % Na by weight
• % Al by weight
• refractive index

  RI      Na    Mg     Al           CLASS
1.51793  12.79  3.5   1.12  ...  building (float)
1.51643  12.16  3.52  1.35  ...  vehicle (float)
1.51793  13.21  3.48  1.41  ...  building (float)
  ...
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When to bag

• Bagging decision trees usually helps

• (but random forests, boosting better)

• Classifier needs to be unstable

• Bagging 1-nearest neighbour not so helpful
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Boosting

• Idea was to transform a “weak learner” 
into a strong one

• The only requirement for a weak learner is 
that its accuracy is slightly above 50% (in 
two-class case)

• Examples of weak learners:

• decision “stumps”, naive Bayes
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Ideas behind boosting

• Boosting is a general term for methods that 
try to “amplify” a weak learner into a 
better one.

• Rather than picking different training sets, 
reweight the training set

• Pick the weights based on which examples 
were misclassified previously 
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Weighted Examples
Up until now, our data sets have been

Now we need to handle weighted data sets

Most classifiers can handle this, no problem.
(how would decision trees?)

D = {D(i),xi, yi | i 2 [1, N ]}

D = {xi, yi | i 2 [1, N ]}

where is a distribution over instancesD(i)

D(i) � 0
NX

i=1

D(i) = 1
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Given: where ,
Initialize .
For :

Train base learner using distribution .
Get base classifier .
Choose .
Update:

where is a normalization factor (chosen so that will be a distribu-
tion).

Output the final classifier:

Figure 1: The boosting algorithm AdaBoost.

2 AdaBoost

Working in Valiant’s PAC (probably approximately correct) learning model [75],
Kearns and Valiant [41, 42] were the first to pose the question of whether a “weak”
learning algorithm that performs just slightly better than random guessing can be
“boosted” into an arbitrarily accurate “strong” learning algorithm. Schapire [66]
came up with the first provable polynomial-time boosting algorithm in 1989. A
year later, Freund [26] developed a much more efficient boosting algorithm which,
although optimal in a certain sense, nevertheless suffered like Schapire’s algorithm
from certain practical drawbacks. The first experiments with these early boosting
algorithms were carried out by Drucker, Schapire and Simard [22] on an OCR task.

The AdaBoost algorithm, introduced in 1995 by Freund and Schapire [32],
solved many of the practical difficulties of the earlier boosting algorithms, and is
the focus of this paper. Pseudocode for AdaBoost is given in Fig. 1 in the slightly
generalized form given by Schapire and Singer [70]. The algorithm takes as input
a training set where each belongs to some domain or
instance space , and each label is in some label set . For most of this paper,
we assume ; in Section 7, we discuss extensions to the multiclass
case. AdaBoost calls a given weak or base learning algorithm repeatedly in a series

3

AdaBoost.M1
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Updating weights
Given: where ,
Initialize .
For :

Train base learner using distribution .
Get base classifier .
Choose .
Update:

where is a normalization factor (chosen so that will be a distribu-
tion).

Output the final classifier:

Figure 1: The boosting algorithm AdaBoost.

2 AdaBoost

Working in Valiant’s PAC (probably approximately correct) learning model [75],
Kearns and Valiant [41, 42] were the first to pose the question of whether a “weak”
learning algorithm that performs just slightly better than random guessing can be
“boosted” into an arbitrarily accurate “strong” learning algorithm. Schapire [66]
came up with the first provable polynomial-time boosting algorithm in 1989. A
year later, Freund [26] developed a much more efficient boosting algorithm which,
although optimal in a certain sense, nevertheless suffered like Schapire’s algorithm
from certain practical drawbacks. The first experiments with these early boosting
algorithms were carried out by Drucker, Schapire and Simard [22] on an OCR task.

The AdaBoost algorithm, introduced in 1995 by Freund and Schapire [32],
solved many of the practical difficulties of the earlier boosting algorithms, and is
the focus of this paper. Pseudocode for AdaBoost is given in Fig. 1 in the slightly
generalized form given by Schapire and Singer [70]. The algorithm takes as input
a training set where each belongs to some domain or
instance space , and each label is in some label set . For most of this paper,
we assume ; in Section 7, we discuss extensions to the multiclass
case. AdaBoost calls a given weak or base learning algorithm repeatedly in a series

3

err =
NX

i=1

Dt(i)I(yi 6= ht(xi))

↵t =
1

2
log

1 � err

err

Use the following “magic” choice
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Ex: Boosted decision stumps

y x1 x2 x3

1 1 1 0
-1 1 0 1
-1 0 0 1
1 0 0 1
1 0 1 1
-1 1 0 0

D1(i) = 1/6 for i 2 {1, 2, . . . 6}

Let’s do the first iteration of boosting on this data set
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Ex: Boosted decision stumps

y x1 x2 x3

1 1 1 0
-1 1 0 1
-1 0 0 1
1 0 0 1
1 0 1 1
-1 1 0 0

x1 = 0x1 = 1

1/3 2/3p(y = +1)

class -1 +1

h1

D1(i) = 1/6 for i 2 {1, 2, . . . 6}
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Ex: Boosted decision stumps

y x1 x2 x3

1 1 1 0
-1 1 0 1
-1 0 0 1
1 0 0 1
1 0 1 1
-1 1 0 0

x1 = 0x1 = 1

1/3 2/3p(y = +1)

class -1 +1

h1

D1(i) = 1/6 for i 2 {1, 2, . . . 6}

X

X

err = 0.3333

↵t =
1

2
log

1 � err

err
=

1

2
log 2 = 0.3465

exp{↵t} = 1.414 exp{�↵t} = 0.707
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Ex: Boosted decision stumps

y x1 x2 x3

1 1 1 0
-1 1 0 1
-1 0 0 1
1 0 0 1
1 0 1 1
-1 1 0 0

X

X

exp{↵t} = 1.414 exp{�↵t} = 0.707

exp{�↵1yih1(xi)} D1(i)

1.414
0.707
1.414
0.707
0.707
0.707

SUM=5.65

0.25
0.125
0.25
0.125
0.125
0.125
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Ex: Iteration 2

y x1 x2 x3

1 1 1 0
-1 1 0 1
-1 0 0 1
1 0 0 1
1 0 1 1
-1 1 0 0

D1(i)

0.25
0.125
0.25
0.125
0.125
0.125

Now induce another decision stump, 
with examples weighted by D1

x1 = 1 x1 = 0

0.5 0.5p(y = +1)

e.g., if split on x1
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↵t = log
1 � err

err

0.0 0.2 0.4 0.6 0.8 1.0

-4
-2

0
2

4

p

al
ph
a
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Loss Functions

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 10
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FIGURE 10.4. Loss functions for two-class classi-
fication. The response is y = ±1; the prediction is
f , with class prediction sign(f). The losses are mis-
classification: I(sign(f) != y); exponential: exp(−yf);
binomial deviance: log(1 + exp(−2yf)); squared er-
ror: (y − f)2; and support vector: (1 − yf)+ (see Sec-
tion 12.3). Each function has been scaled so that it
passes through the point (0, 1).

Friday, 27 January 12

Loss functions
Can view AdaBoost as approximately 
minimizing prediction error

that minimizes training error

i.e., We want to learn an ensemble

H(x) =

TX

t=1

↵tht(x)

Err =
1

N

NX

i=1

I(yi 6= H(xi))

with respect to

Difficult to optimize directly (e.g., why not gradient descent?)
so we approximate...

{↵t}, {ht}

Friday, 27 January 12

Loss functions
AdaBoost trick: Minimize upper bound on error

We still can’t minimise this exactly, so be greedy.
Alternately minimise with respect to alpha and h_t.

1

N

NX

i=1

I(yi 6= H(xi)) 
1

N

NX

i=1

exp{�yiH(xi)}

=
1

N

NX

i=1

exp

(
�yi

X

t

↵tht(xi)

)

:= L(↵1, ↵2, . . . , ↵t, h1, h2, . . . ht)

=
Y

t

Zt

(!!!)
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Given: where ,
Initialize .
For :

Train base learner using distribution .
Get base classifier .
Choose .
Update:

where is a normalization factor (chosen so that will be a distribu-
tion).

Output the final classifier:

Figure 1: The boosting algorithm AdaBoost.

2 AdaBoost

Working in Valiant’s PAC (probably approximately correct) learning model [75],
Kearns and Valiant [41, 42] were the first to pose the question of whether a “weak”
learning algorithm that performs just slightly better than random guessing can be
“boosted” into an arbitrarily accurate “strong” learning algorithm. Schapire [66]
came up with the first provable polynomial-time boosting algorithm in 1989. A
year later, Freund [26] developed a much more efficient boosting algorithm which,
although optimal in a certain sense, nevertheless suffered like Schapire’s algorithm
from certain practical drawbacks. The first experiments with these early boosting
algorithms were carried out by Drucker, Schapire and Simard [22] on an OCR task.

The AdaBoost algorithm, introduced in 1995 by Freund and Schapire [32],
solved many of the practical difficulties of the earlier boosting algorithms, and is
the focus of this paper. Pseudocode for AdaBoost is given in Fig. 1 in the slightly
generalized form given by Schapire and Singer [70]. The algorithm takes as input
a training set where each belongs to some domain or
instance space , and each label is in some label set . For most of this paper,
we assume ; in Section 7, we discuss extensions to the multiclass
case. AdaBoost calls a given weak or base learning algorithm repeatedly in a series

3

AdaBoost.M1

↵t =
1

2
log

1 � err

err

Minimizes L wrt ht

Minimizes L wrt ↵t
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Boosting can help
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FIGURE 10.2. Simulated data (10.2): test error rate
for boosting with stumps, as a function of the number
of iterations. Also shown are the test error rate for a
single stump, and a 244-node classification tree.
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Boosting can help

0 5 10 15 20 25 30
0
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C
4.
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boosting stumps boosting C4.5

Figure 3: Comparison of C4.5 versus boosting stumps and boosting C4.5 on a set
of 27 benchmark problems as reported by Freund and Schapire [30]. Each point
in each scatterplot shows the test error rate of the two competing algorithms on
a single benchmark. The -coordinate of each point gives the test error rate (in
percent) of C4.5 on the given benchmark, and the -coordinate gives the error rate
of boosting stumps (left plot) or boosting C4.5 (right plot). All error rates have
been averaged over multiple runs.

AdaBoost to four other methods are shown in Fig. 4. In nearly all of these ex-
periments and for all of the performance measures tested, boosting performed as
well or significantly better than the other methods tested. As shown in Fig. 5, these
experiments also demonstrated the effectiveness of using confidence-rated predic-
tions [70], mentioned in Section 3 as a means of speeding up boosting.

Boosting has also been applied to text filtering [72] and routing [39], “ranking”
problems [28], learning problems arising in natural language processing [1, 12, 25,
38, 55, 78], image retrieval [74], medical diagnosis [53], and customer monitoring
and segmentation [56, 57].

Rochery et al.’s [64, 65] method of incorporating human knowledge into boost-
ing, described in Section 8, was applied to two speech categorization tasks. In this
case, the prior knowledge took the form of a set of hand-built rules mapping key-
words to predicted categories. The results are shown in Fig. 6.

The final classifier produced by AdaBoost when used, for instance, with a
decision-tree base learning algorithm, can be extremely complex and difficult to
comprehend. With greater care, a more human-understandable final classifier can
be obtained using boosting. Cohen and Singer [11] showed how to design a base

14
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On glass data

Standard DT      61%
Bagged DT        68%
AdaBoost         70%
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Differences between 
bagging and boosting

• Bagging for unstable (i.e., high variance) 
classifiers

• Boosting often useful for biased classifiers 
as well 

• Both improve performance

• Both need to choose base classifier

• Boosting typically performs better

• Both lose interpretability
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Heterogeneous 
ensembles

• Data mining competitions usually won by 
ensemble methods (e.g., Netflix)

• Often the classifiers are completely 
heterogeneous
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Examinable reading (on Web site):

Rob Shapire, The Boosting Approach to Machine Learning 
(Sections 4-8 not examinable)

Leo Breiman, Bagging predictors, Machine Learning, 1996
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