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The Classification
Problem

Figure from [Hastie, Tibshirani, and Friedman, 2009]

Classification Methods

® Naive Bayes

® [ ogistic Regression

® Decision Trees

® Nearest Neighbour

® Neural Networks

® SupportVector Machines

® Ensemble Methods
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Classification Methods

® Naive Bayes

® | ogistic Regression

® Decision Trees (CART)
® Nearest Neighbour

® Neural Networks

® SupportVector Machines

® Ensemble Methods (Bagging, Boosting)

Decision Trees

® This will be very fast

® For a refresher see |IAML lecture video

® http://gsroups.inf.ed.ac.uk/vision/VIDEO/201 | /iaml.htm
(lecture 5)

® (or look at readings)
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What Decision Trees Look Like
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What Decision Trees Look Like
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How to build trees

® First idea: Find a tree that is always correct
on training data

® Problem:This idea is stupid.

How to build trees

® Second idea: Find the smallest possible tree
that fits the training data

® This doesn’t work either.
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How to build trees

Solution:

® Be recursive.

® Be greedy.

Tree Building Algorithm

Start with tree containing only root
Assign all instances to the root
Repeat:
Pick a leaf v in the tree
If no features left, ignore v
If all instances have same class, ignore v
Choose a feature x; to split the tree on
Add children to v, one for each value of x;
Subdivide instances of v accordingly
Until all leaves have been processed
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What Decision Trees Look Like

How to choose
features to split?
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GOOD BAD
How to choose .
Extensions

features to split?

Gini DPm,—1Pm,1

Cross-entropy  Pm,—1108Pm,—1 + Pm,1108 Pm 1

® Multiple classes
® Continuous values

® Pruning
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Advantages,
disadvantages

® Good: Fast to train, Easy to interpret

® Bad:Accuracy not great, Unstable

Readings

Examinable readings:

® Section 9.2 of Hastie, Tibshirani, and
Friedman

® http://www-stat.stanford.edu/~tibs/
ElemStatLearn/download.html

® HMS Section 10.5

® Also see IAML Lecture video earlier
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