Decision Trees

Charles Sutton
Data Mining and Exploration
Spring 2012

The Classification Problem

Figure from [Hastie, Tibshirani, and Friedman, 2009]

Friday, 27 January 12

Friday, 27 January 12

The Classification Problem

Figure from [Hastie, Tibshirani, and Friedman, 2009]

Classification Methods

- Naive Bayes
- Logistic Regression
- Decision Trees
- Nearest Neighbour
- Neural Networks
- Support Vector Machines
- Ensemble Methods

Friday, 27 January 12

Classification Methods

- Naive Bayes
- Logistic Regression
- Decision Trees (CART)
- Nearest Neighbour
- Neural Networks
- Support Vector Machines
- Ensemble Methods (Bagging, Boosting)

Decision Trees

- This will be very fast
- For a refresher see IAML lecture video
 - http://groups.inf.ed.ac.uk/vision/VIDEO/2011/iaml.htm (lecture 5)
- (or look at readings)

Friday, 27 January 12

Friday, 27 January 12

What Decision Trees Look Like

y	x_1	x_2	x_3
1	1	1	0
-1	1	0	1
-1	0	0	1
1	0	0	1
1	0	1	1
-1	1	0	0

What Decision Trees Look Like

$y \mid$	x_1	x_2	x_3
1	1	1	0
-1	1	0	1
-1	0	0	1
1	0	0	1
1	0	1	1
-1	1	0	0

Friday, 27 January 12

How to build trees

- First idea: Find a tree that is always correct on training data
- Problem: This idea is stupid.

How to build trees

- Second idea: Find the smallest possible tree that fits the training data
- This doesn't work either.

riday, 27 January 12

Friday, 27 January 12

How to build trees

Solution:

- Be recursive.
- Be greedy.

Tree Building Algorithm

Start with tree containing only root Assign all instances to the root Repeat:

Pick a leaf v in the tree
If no features left, ignore v
If all instances have same class, ignore v
Choose a feature x_j to split the tree on
Add children to v, one for each value of x_j Subdivide instances of v accordingly
Until all leaves have been processed

Friday, 27 January 12

What Decision Trees Look Like

y	x_1	x_2	x_3
1	1	1	0
-1	1	0	1
-1	0	0	1
1	0	0	1
1	0	1	1
-1	1	0	0

y	x_1	x_2	x_3
1	1	1	0
-1	1	0	1
-1	0	0	1
1	0	0	1
1	0	1	1
-1	1	0	0

How to choose features to split?

• Basically need a measure of the "purity" of instances at a leaf

 $x_2 = 0$ 190/400 210/400

GOOD

BAD

Friday, 27 January 12

How to choose features to split?

Gini

 $p_{m,-1}p_{m,1}$

Cross-entropy

 $p_{m,-1}\log p_{m,-1} + p_{m,1}\log p_{m,1}$

Extensions

- Multiple classes
- Continuous values
- Pruning

Friday, 27 January 12

Advantages, disadvantages

- Good: Fast to train, Easy to interpret
- Bad:Accuracy not great, Unstable

Readings

Examinable readings:

- Section 9.2 of Hastie, Tibshirani, and Friedman
 - http://www-stat.stanford.edu/~tibs/
 ElemStatLearn/download.html
- HMS Section 10.5
- Also see IAML Lecture video earlier

Friday, 27 January 12