Association Rules

Charles Sutton
Data Mining and Exploration
Spring 2012

Based on slides by Chris Williams and Amos Storkey

Thursday, 8 March 12

Thursday, 8 Ma

Example Data

Market basket analysis, e.g., supermarket ltem

Transactions trip to market

Chicken	Onion	Rocket	Caviar	Haggis	
1		1		1	
	1	1		1	
1	1			1	
				1	
		1		1	
1				1	

. . . .

These are databases that companies have already.

The Goal

- Find "patterns": local regularities that occur more often than you would expect. Examples:
 - If a person buys wine at a supermarket, they also buy cheese. (confidence: 20%)
 - If a person likes Lord of the Rings and Star Wars, they like Star Trek (confidence: 90%)
- Look like they could be used for classification, but
 - There is not a single class label in mind. They can predict any attribute or a set of attributes. They are unsupervised
 - Not intended to be used together as a set
- Often mined from very large data sets

Other Examples

- Collaborative-filtering type data: e.g., Films a person has watched
- Rows: patients, columns: medical tests (Cabena et al, 1998)
- Survey data (Impact Resources, Inc., Columbus OH, 1987)

1 Sex 2 Catego 2 Marital status 5 Catego	rical
2 Marital status 5 Catego	rical
	1
3 Age 7 Ordina	
4 Education 6 Ordina	1
5 Occupation 9 Catego	rical
6 Income 9 Ordina	1
7 Years in Bay Area 5 Ordina	1
8 Dual incomes 3 Catego	rical
9 Number in household 9 Ordina	1
10 Number of children 9 Ordina	1
11 Householder status 3 Catego	rical
12 Type of home 5 Catego	rical
13 Ethnic classification 8 Catego	
14 Language in home 3 Catego	

Thursday, 8 March 12 Thursday, 8 March 12

Toy Example

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	False	No
D2	Sunny	Hot	High	True	No
D3	Overcast	Hot	High	False	Yes
D4	Rain	Mild	High	False	Yes
D5	Rain	Cool	Normal	False	Yes
D6	Rain	Cool	Normal	True	No
D7	Overcast	Cool	Normal	True	Yes
D8	Sunny	Mild	High	False	No
D9	Sunny	Cool	Normal	False	Yes
D10	Rain	Mild	Normal	False	Yes
D11	Sunny	Mild	Normal	True	Yes
D12	Overcast	Mild	High	True	Yes
D13	Overcast	Hot	Normal	False	Yes
D14	Rain	Mild	High	True	No

Itemsets, Coverage, etc

- Call each column an attribute $A_1, A_2, \dots A_m$
- An item set is a set of attribute value pairs

$$(A_{i_1} = a_{j_1}) \wedge (A_{i_2} = a_{j_2}) \wedge \dots (A_{i_k} = a_{j_k})$$

• Example: In the Play Tennis data

 $Humidity = Normal \land Play = Yes \land Windy = False$

- The support of an item set is its frequency in the data set
 - Example:
 - **SUPPORT** (Humidity = Normal \land Play = Yes \land Windy = False) = 4
- The confidence of an association rule if Y=y then Z=z is • Example: P(Z = z | Y = y)

 $P(Windy = False \land Play = Yes|Humidity = Normal) = 4/7$

Thursday, 8 March 12

Thursday, 8 March 12

Item sets to rules

- First: We will find frequent item sets
- Then: We convert them to rules
- An itemset of size k can give rise to 2^k-1 rules
- Example: itemset

Windy=False, Play=Yes, Humidity=Normal

Results in 7 rules including:

IF Windy=False and Humidity=Normal THEN Play=Yes IF Play=Yes THEN Humidity=Normal and Windy=False IF True THEN Windy=False and Play=Yes and Humidity=Normal (4/14)

We keep rules only whose confidence is greater than a threshold

Finding Frequent Itemsets

- Task: Find all item sets with support
- Insight: A large set can be no more frequent than its subsets, e.g.,

 $support(Wind = False) \ge support(Wind = False, Outlook = Sunny)$

- So search through itemsets in order of number of items
- An efficient algorithm for this is APRIORI (Agarwal and Srikant, 1994; Mannila et al, 1994)

Thursday, 8 March 12 Thursday 8 March 12

APRIORI Algorithm

(for binary variables)

```
i=1
C_i = \{\{A\} | A \text{ is a variable}\}
while C_i is not empty
database pass:
for each set in C_i test if it is frequent
let L_i be collection of frequent sets from C_i
candidate formation:
let C_{i+1} be those sets of size i+1
all of whose subsets are frequent
end while
```

Single database pass is linear in $|C_i|n$, make a pass for each i until C_i is empty

Candidate formation

► Find all pairs of sets $\{U, V\}$ from L_i such that $U \cup V$ has size i + 1 and test if this union is really a potential candidate. $O(|L_i|^3)$

Example: 5 three-item sets
(ABC), (ABD), (ACD), (ACE), (BCD)
Candidate four-item sets
(ABCD) ok
(ACDE) not ok because (CDE) is not present above

Thursday, 8 March 12

Thursday, 8 March 1:

Comments

- Some association rules will be trivial, some interesting. Need to sort through them
 - Example: pregnant => female (confidence: I)
- Also can miss "interesting but rare" rules
 - Example: vodka --> caviar (low support)
- Really this is a type of exploratory data analysis
- For rule A -->B, can be useful to compare P(B|A) to P(B)
- APRIORI can be generalised to structures like subsequences and subtrees