This tutorial deals with estimating probabilities and very simple language models. You will need a calculator (with logs).

1. Suppose you are given the following training set:

 the quick brown fox jumps over the lazy dog

 Ignoring spaces, estimate an unconditional distribution over single characters \(p(c) \), where \(c \) is drawn from the set of all letters. Let us call this **Model 1**.

2. The log-likelihood of examples \(c_1, ..., c_n \) is:

 \[
 LL = -\sum_i \log p(c_i)
 \]

 Compute the log-likelihood of the training material with respect to **Model 1**. Why is it not 0?

3. What is the log-likelihood of the following testing material

 mary had a little lamb

 How does this compare to log-likelihood for the training material? How can you account for sentence length?

4. Create a new **Model 2** that has a higher log-likelihood on the testing material. Does the log-likelihood on the training material improve as well?

5. Compute the perplexity of **Model 1** and **Model 2**, both on the training as well as the test data.

6. Discuss how language models over letters can be used for language detection: Given a text, we want to know, which language it is in.

note: based on a tutorial by Miles Osborne