Data Intensive Linguistics — Lecture 13 Semantics and discourse

Philipp Koehn

20 February 2006

Philipp Koehn DIL Lecture 11 20 February 2006

WordNet: an ontology of concepts

ANIMAL

MAMMAL

CARNIVORE

CANINE

WOLF

DIL Lecture 11

Thematic roles

see the woman with the telescope

• Specific verbs typically require arguments with specific thematic roles and

DIL Lecture 11

Source of semantic knowledge

FOX

FELINE

CAT

• Words play semantic roles in a sentence

allow adjuncts with specific thematic roles

• Semantic knowledge is not directly observable

- may not contain all information we want, e.g.

• Building semantic knowledge bases

* pigeon is a typical bird

* penguin is not a typical bird

• Can we automatically learn semantics?

- labor intensive

- for instance WordNet, an ontology

Philipp Koehn

Philipp Koehr

DOG

Semantics

- What is meaning?
- What is the meaning of the word cat?
 - not a specific cat
 - not all cats
- → abstract notion of any cat
- Atomic semantic units: concepts
 - example: cat → CAT

Philipp Koehn DIL Lecture 11 20 February 2006

informatics

Semantic relationships

- Hypernym / hyponym
- CAT is-a FELINE
- basis of hierarchical relationships in WordNet

nformatics

20 February 2006

anformatics

nformatics

BEAR

- Part / whole CAT has-part PAW
- PAW is-part-of CAT
- Membership
 - FACULTY has-member PROFESSOR
 - PROFESSOR is-member-of FACULTY
- Antonym / opposite LEADER is-opposite-of FOLLOWER

Philipp Koehn DIL Lecture 11 20 February 2006

finformatics

Semantic frames

- Complex concepts can be defined by semantic frames, whose slots are filled by concrete information
- SOCCER-GAME
 - HOME-TEAM: Heart of Midlothian
 - AWAY-TEAM: FC Motherwell
 - SCORE: 3-0
 - TIME-STARTED: 2006-02-18 16:00 GMT
 - LOCATION: Tynecastle Stadium, Edinburgh
- Information extraction: can we fill semantic frames from text?

DIL Lecture 11 Philipp Koehr 20 February 2006

7 inf^{School of}tics

Learning semantics

The meaning of a word is its use. Ludwig Wittgenstein, Aphorism 43

- Represent context of a word in a vector
 - → Similar words have similar context vectors
- Example: Google sets http://labs.google.com/sets
 - one meaning of cat
 - enter: cat, dog
 - return: cat, dog, horse, fish, bird, rabbit, cattle, ...
 - another meaning of cat
 - enter: cat. more

Philipp Koehn

- return: more, cat, ls, rm, mv, cd, cp, ...

Philipp Koehn DIL Lecture 11 20 February 2006 DIL Lecture 11

20 February 2006

anformatics

Learning prejudices

- Detecting national stereotypes with Google
- Enter: Scots are known to be * ⇒ frugal, friendly, generous, thrifty, ...
- Enter: Englishmen are known to be * ⇒ prudish, great sports-lovers, people with manners, courteous, cold, ...
- Enter: Germans are known to be * ⇒ pathetic, hard-nosed, arrogant, very punctual, fanatical, hard-working, ...

Philipp Koehn DIL Lecture 11 20 February 2006

Text segmentation

- wanted: segmentation into smaller units with different topics

DIL Lecture 11

• Some text types have very pronounced topic shifts

- news broadcasts cover different stories

- lectures - speeches

- essays

Philipp Koehn

• Task text segmentation

- given: text

• Also other long texts may cover multiple topics

DIL Lecture 11

Segmentation by vocabulary change

- At a topic boundary, use of vocabulary changes
- By comparing vocabulary of neighboring text parts, boundaries can be detected
- Example: Stargazers text from Hearst [1994]
 - intro: the search for life in space
 - the moons chemical composition
- how early proximity of the moon shaped it
- how the moon helped life evolve on earth
- improbability of the earth-moon system

next slide from MIT class 6.864: Natural Language Processing

Philipp Koehn DIL Lecture 11 20 February 2006

12 informatics

20 February 2006

nformatics

Sen	tence:		05		10	15	5	20	2	5	30	35		40	45	5	50	55	60		65	70	7	5	80		85	90		95 I
14	form		1		11:	1	1	1									1	1	1	1		1		1		1		1		,
8	scientist							11				1	1					1			1	1	1							- 1
5	space 1	1		1		1																	1							- 1
25	star		1				1	1											11	22	1	11112	1	1 1		11	11	11		1
5	binary																		11		1		1							1
4	trinary																		1		1		1							1
8 :	astronomer 1						1	1											1	1			1	1		1	1			- 1
7	orbit	3	1						1											12	2	1 1								- 1
6	pull									2		1 1										1 1								- 1
16	planet	3	1	1			11					1			1	L				2:	1	11111						1		1
7	galaxy		1															1					1	11		1				1
4	lunar					. 1	1	1	L		1																			- 1
19	life 1		1	1									1		11	1	11	1	1					1	1		1	111	1	1
27	moon			1	3 :	111	1	1 1	22	21	21		21				11	1												- 1
3	move													1	1	1														- 1
7	continent													2 1	. 1 2	1														- 1
3	shoreline														1	12														- 1
6	time								1				1	1	. 1		1												1	. 1
3	water											11					1													- 1
6	say											1 1			1			11				1								- 1
3	species													1	. 1	1														- 1
Sentence:			05		10	15	5	20	2	5	30	35		40	45	5	50	55	60		65	70	7	5	80		85	90		95

Philipp Koehi DIL Lecture 11 20 February 2006

Rhetorical relations

- Rhetorical Structure Theory (RST): relations between spans of EDUs
- Example:

ATTRIBUTION the bank also says ENABLEMENT it will use its network to channel investments

Philipp Koehi DIL Lecture 11 20 February 2006

nformatics

Types of rhetorical relations

- Mono-nuclear: Nucleus is more salient than satellite, which contains supporting information
- Multi-nuclear: joining spans have equal importance
- 78 types of relations in 16 classes attribution, background, cause, comparison, condition, contrast, elaboration, enablement, evaluation, explanation, joint, manner-means, topic-comment, summary, temporal, topic-change
- More detail, see: Building a discourse-tagged corpus in the framework of rhetorical structure theory by Lynn Carlson, Daniel Marcu, and Mary Ellen Okurowski [SIGDIAL 2001]

f informatics

13 informatics

Discourse parsing

- Human annotator agreement on rhetorical relations is not very high
- 71.9% if 18 relation types are used
- 77.0% if 110 relation types are used
- Probabilistic parsing model [Soricut and Marcu, NAACL 2003]
 - probabilistic chart parser
 - achieves similar performance
- Experiments done on the sentence level.
- Discourse parsing should be useful for, e.g., summarization

Philipp Koehn DIL Lecture 11 DIL Lecture 11 20 February 2006 20 February 2006 Philipp Koehn

Discourse

- Beyond the sentence level, we are interested in how texts are structured
 - central message of text
 - supporting arguments

Philipp Koehn

- introduction, conclusion
- Elementary discourse units (EDU) (~ clauses) are related to each other
- ullet Texts shift in focus o text segmentation

20 February 2006

T informatics

Anaphora

Violent protests broke out again in Happyland. According to the country's department of peace, flowers will be handed out tomorrow. A spokesman of the department announced that they will be blue and green. This will demonstrates the country's commitment to alleviate the situation.

- A text contains often multiple references to the same objects:
 - flowers they
 - Happyland the country
 - department of peace the department
 violent protests the situation
- handing out flowers this
- Anaphora resolution (matching the references) is a hard problem

Philipp Koehn DIL Lecture 11

17 informatics

Sentiment detection

- What is the overall **sentiment** of a text
- Example: movie review
 - is it a recommendation or a negative review?
 - can be framed as a text classification problem
 - see Seeing stars: exploiting class relationships for sentiment categorization with respect to rating scales by Bo Pang and Lillian Lee [ACL 2005]
- Similar questions
 - is a text critical of a person?
 - does the text have a bias (political, etc.)?

Philipp Koehn DIL Lecture 11 20 February 2006