Semantics

- What is meaning?

- What is the meaning of the word *cat*?
 - not a specific cat
 - not all cats
 → abstract notion of any cat

- Atomic semantic units: **concepts**
 - example: *cat* → *CAT*
WordNet: an ontology of concepts

ENTITY

ANIMAL

MAMMAL

CARNIVORE

FELINE

CANINE

BEAR

CAT

DOG

WOLF

FOX
Semantic relationships

- **Hypernym / hyponym**
 - *CAT is-a FELINE*
 - basis of hierarchical relationships in WordNet

- **Part / whole**
 - *CAT has-part PAW*
 - *PAW is-part-of CAT*

- **Membership**
 - *FACULTY has-member PROFESSOR*
 - *PROFESSOR is-member-of FACULTY*

- **Antonym / opposite**
 - *LEADER is-opposite-of FOLLOWER*
Thematic roles

• Words play semantic roles in a sentence

I see the woman with the telescope.

AGENT THEME INSTRUMENT

• Specific verbs typically require arguments with specific thematic roles and allow adjuncts with specific thematic roles.
Semantic frames

- Complex concepts can be defined by **semantic frames**, whose **slots** are filled by concrete information

- **SOCCER-GAME**
 - HOME-TEAM: Heart of Midlothian
 - AWAY-TEAM: FC Motherwell
 - SCORE: 3-0
 - TIME-STARTED: 2006-02-18 16:00 GMT
 - LOCATION: Tynecastle Stadium, Edinburgh

- **Information extraction**: can we fill semantic frames from text?
Source of semantic knowledge

- Semantic knowledge is not directly observable

- Building semantic knowledge bases
 - for instance WordNet, an ontology
 - labor intensive
 - may not contain all information we want, e.g.
 * pigeon is a typical bird
 * penguin is not a typical bird

- Can we automatically learn semantics?
Learning semantics

The meaning of a word is its use.

Ludwig Wittgenstein, Aphorism 43

- Represent context of a word in a vector
 - Similar words have similar context vectors

- Example: **Google sets** http://labs.google.com/sets
 - one meaning of *cat*
 - enter: *cat, dog*
 - return: *cat, dog, horse, fish, bird, rabbit, cattle, ...*
 - another meaning of *cat*
 - enter: *cat, more*
 - return: *more, cat, ls, rm, mv, cd, cp, ...*
Learning prejudices

• Detecting national stereotypes with Google

• Enter: *Scots are known to be* ⇒ frugal, friendly, generous, thrifty, ...

• Enter: *Englishmen are known to be* ⇒ prudish, great sports-lovers, people with manners, courteous, cold, ...

• Enter: *Germans are known to be* ⇒ pathetic, hard-nosed, arrogant, very punctual, fanatical, hard-working, ...
Discourse

• Beyond the sentence level, we are interested in how texts are structured
 – central message of text
 – supporting arguments
 – introduction, conclusion

• Elementary discourse units (EDU) (∼ clauses) are related to each other

• Texts shift in focus → text segmentation
Text segmentation

• Some text types have very pronounced topic shifts
 – news broadcasts cover different stories

• Also other long texts may cover multiple topics
 – lectures
 – speeches
 – essays

• Task text segmentation
 – given: text
 – wanted: segmentation into smaller units with different topics
Segmentation by vocabulary change

- At a **topic boundary**, use of vocabulary changes

- By comparing vocabulary of neighboring text parts, boundaries can be detected

- Example: *Stargazers text* from Hearst [1994]
 - intro: the search for life in space
 - the moons chemical composition
 - how early proximity of the moon shaped it
 - how the moon helped life evolve on earth
 - improbability of the earth-moon system
<table>
<thead>
<tr>
<th>Sentence:</th>
<th>05</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
<th>65</th>
<th>70</th>
<th>75</th>
<th>80</th>
<th>85</th>
<th>90</th>
<th>95</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>11</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td>22</td>
<td>111112</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td></td>
<td>12</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>11</td>
<td>1</td>
<td></td>
<td>21</td>
<td>11111</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>11</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td>11</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Philipp Koehn DIL Lecture 11 20 February 2006
Rhetorical relations

- **Rhetorical Structure Theory (RST):** relations between spans of EDUs

- Example:

 - the bank also says
 - it will use its network to channel investments
Types of rhetorical relations

- **Mono-nuclear**: Nucleus is more salient than satellite, which contains supporting information

- **Multi-nuclear**: joining spans have equal importance

- 78 types of relations in 16 classes: attribution, background, cause, comparison, condition, contrast, elaboration, enablement, evaluation, explanation, joint, manner-means, topic-comment, summary, temporal, topic-change

- More detail, see: *Building a discourse-tagged corpus in the framework of rhetorical structure theory* by Lynn Carlson, Daniel Marcu, and Mary Ellen Okurowski [SIGDIAL 2001]
Discourse parsing

- **Human annotator agreement** on rhetorical relations is not very high
 - 71.9% if 18 relation types are used
 - 77.0% if 110 relation types are used

- *Probabilistic parsing model* [Soricut and Marcu, NAACL 2003]
 - probabilistic chart parser
 - achieves similar performance

- Experiments done on the sentence level.

- Discourse parsing should be useful for, e.g., *summarization*
Anaphora

Violent protests broke out again in Happyland. According to the country’s department of peace, flowers will be handed out tomorrow. A spokesman of the department announced that they will be blue and green. This will demonstrates the country’s commitment to alleviate the situation.

• A text contains often multiple **references** to the same objects:
 – flowers — they
 – Happyland — the country
 – department of peace — the department
 – violent protests — the situation
 – handing out flowers — this

• **Anaphora resolution** (matching the references) is a hard problem
Sentiment detection

• What is the overall sentiment of a text

• Example: movie review
 – is it a recommendation or a negative review?
 – can be framed as a text classification problem
 – see *Seeing stars: exploiting class relationships for sentiment categorization with respect to rating scales* by Bo Pang and Lillian Lee [ACL 2005]

• Similar questions
 – is a text critical of a person?
 – does the text have a bias (political, etc.)?