# Data Intensive Linguistics — Lecture 9 Parsing (I): Context-free grammars and chart parsing

Philipp Koehn 6 February 2006



Philipp Koehn DIL Lecture 9 6 February 20

A simple sentence

I like the interesting lecture

#### The path so far

- $\bullet$  Originally, we treated language as a sequence of words  $\rightarrow$  n-gram language models
- Then, we introduced the notion of syntactic properties of words
   → part-of-speech tags
- $\bullet \ \, \text{Now, we look at } \, \text{syntactic relations} \, \text{between words} \\ \rightarrow \, \text{syntax trees}$

Philipp Koehn DIL Lecture 9 6 February 2006

#### nformatics

#### Part-of-speech tags

Philipp Koehn DIL Lecture 9 6 February 2006

#### anformatics

6 February 2006

nf School of of of or of

#### Syntactic relations

DIL Lecture 9

I like the interesting lecture PRO VB DET JJ NN

- The adjective interesting gives more information about the noun lecture
- $\bullet$  The determiner  $\emph{the}$  says something about the noun  $\emph{lecture}$

Philipp Koehn

- The noun *lecture* is the object of the verb *like*, specifying *what* is being liked
- The pronoun / is the subject of the verb like, specifying who is doing the liking

Philipp Koehn DIL Lecture 9 6 February 2006

## Dependency structure

This can also be visualized as a dependency tree:



Philipp Koehn DIL Lecture 9 6 February 2006

#### 7 informatics

finformatics

#### Phrase-structure tree

A popular grammar formalism is **phrase structure grammar** Internal nodes combine leaf nodes into phrases, such as *noun phrases (NP)* 



#### nformatics

#### Dependency structure (2)

The dependencies may also be labeled with the type of dependency

| 1            | like | the          | interesting | lecture  |
|--------------|------|--------------|-------------|----------|
| PRO          | VB   | DET          | 11          | NN       |
| $\downarrow$ |      | $\downarrow$ | <b>↓</b>    | <b>↓</b> |
| subject      |      | adjunct      | adjunct     | object   |
| $\downarrow$ |      | $\downarrow$ | <b>↓</b>    | <b>↓</b> |
| like         |      | lecture      | lecture     | like     |

Philipp Koehn DIL Lecture 9 6 February 2006

Philipp Koehn DIL Lecture 9

6 February 2006

Output

NP VP

PRO VP

/ VP

/ VP NE

/ VB

*I like* NF

*l like* DET JJ NN

I like the JJ NN

I like the interesting NN

#### **Building phrase-structure trees**

- Our task for this week: parsing
  - given: an input sentence with part-of-speech tags
  - wanted: the right syntax tree for it
- Formalism: context-free grammars
  - non-terminal nodes such as NP, S appear inside the tree
  - terminal nodes such as like, lecture appear at the leafs of the tree
  - rules such as  $NP \rightarrow DET JJ NN$

Philipp Koehn DIL Lecture 9 6 February 2006

#### NN → lecture I like the interesting NN I like the interesting lecture

#### nformatics

#### Recursion

Rules can be applied **recursively**, for example the rule  $VP \rightarrow NP VP$ 



Philipp Koehn DIL Lecture 9 6 February 2006

#### 12 informatics

nformatics

#### Why is parsing hard?

Prepositional phrase attachment: Who has the telescope?



• We have input sentence: I like the interesting lecture • We have a set of context-free rules:



DIL Lecture 9 Philipp Koehi 6 February 2006

**CYK Parsing** 

S ightarrow NP VP, NP ightarrow PRO, PRO ightarrow  $I_r$  VP ightarrow VP NP, VP ightarrow VB, VB ightarrow  $like_r$ 

NP o DET JJ NN, DET o the, JJ o, NN o lecture

• Cocke-Younger-Kasami (CYK) parsing - a bottom-up parsing algorithm - uses a chart to store intermediate result

#### Tinformatics

6 February 2006

#### Context-free grammars in context

Applying the rules Rule

→ NP VP

 $\mathsf{NP} \to \mathsf{PRO}$ 

PRO → /  $VP \rightarrow VP NF$ 

 $VP \rightarrow VB$ 

VB → like

 $\mathsf{NP} o \mathsf{DET} \mathsf{JJ} \mathsf{NN}$ 

 $\mathsf{DET} \to \mathit{the}$ 

 $\mathsf{JJ} o \mathsf{interesting}$ 

DIL Lecture 9

• Chomsky hierarchy of formal languages (terminals in caps, non-terminal lowercase)

Input

NP VP

PRO VP

/ VP

/ VP NE

/ VB NP

*I like* NP

I like DET JJ NN

I like the JJ NN

Philipp Koehn

- regular: only rules of the form  $A \to a, A \to B, A \to Ba$  (or  $A \to aB$ ) Cannot generate languages such as  $a^nb^n$
- context-free: left-hand side of rule has to be single non-terminal, anything goes on right hand-side. Cannot generate  $a^nb^nc^n$
- context-sensitive: rules can be restricted to a particular context, e.g.  $\alpha A\beta \to \alpha aBc\beta$ , where  $\alpha$  and  $\beta$  are strings of terminal and non-terminals
- Moving up the hierarchy, languages are more expressive and parsing becomes computationally more expensive
- Is natural language context-free?

Philipp Koehn DIL Lecture 9 6 February 2006

#### 13 informatics

#### Why is parsing hard?

Scope: Is Jim also from Hoboken?





lecture 5

DIL Lecture 9 6 February 2006 Philipp Koeh

Initialize chart with the words

#### **Example**

Philipp Koehn

interesting

Philipp Koehn DIL Lecture 9 6 February 2006 DIL Lecture 9

6 February 2006

f informatics

#### Example (2)

Apply first terminal rule PRO  $\rightarrow I$ 

Example (3)

... and so on ...



Philipp Koehn DIL Lecture 9 6 February 2006



Philipp Koehn DIL Lecture 9 6 February 2006

#### nformatics

#### Example (4)

Try to apply a non-terminal rule to the first word The only matching rule is  $NP \rightarrow PRO$ 

like

NP



interesting

lecture 5

Philipp Koehn DIL Lecture 9 6 February 2006

the



#### Example (5)

Recurse: try to apply a non-terminal rule to the first word No rule matches



Philipp Koehn DIL Lecture 9 6 February 2006

#### anformatics

#### Example (6)

Try to apply a non-terminal rule to the second word The only matching rule is  $VP \rightarrow VB$ No recursion possible, no additional rules match



Philipp Koehr DIL Lecture 9 6 February 2006

## nformatics

#### Example (7)

Try to apply a non-terminal rule to the third word No rule matches



6 February 2006 Philipp Koehr DIL Lecture 9

#### anf School of tics

#### Example (8)

Try to apply a non-terminal rule to the first two words The only matching rule is  $S \rightarrow NP VP$ 

No other rules match for spans of two words



anf School of tics

### Example (9)

One rule matches for a span of three words: NP  $\rightarrow$  DET JJ NN



Philipp Koehn DIL Lecture 9 6 February 2006 Philipp Koehn DIL Lecture 9 6 February 2006

#### 1 informatics

#### Example (10)

One rule matches for a span of four words:  $VP \rightarrow VP NP$ 



DIL Lecture 9 6 February 2006 Philipp Koehn

## anf School of tics CYK algorithm for binarized grammars

# - for all words $w_i\colon //$ terminal rules - for all rules $A\to w_i\colon$ add new chart entry A at span [i,i]

- for length=1 to sentence length n // non-terminal rules
  - for start = 1 to  $n (lengt\tilde{h} 1)$

  - end = start + length 1- for middle = start to end-1: // binary rules for all non-terminals X in [start, middle]: for all non-terminals Y in [middle+1,end]for all rules A o X Y: add new chart entry A at position [start, end]
  - for all non-terminals X in [start,end]: // unary rules  $\text{ for all rules } A \to X :$  ${\rm add} \ {\rm new} \ {\rm chart} \ {\rm entry} \ A \ {\rm at} \ {\rm position} \ [start, end]$

Philipp Koehn DIL Lecture 9 6 February 2006

#### 1nformatics

#### Example (11)

One rule matches for a span of five words:  $S \rightarrow NP VP$ 



DIL Lecture 9 6 February 2006 Philipp Koehn